[ ]:
%load_ext autoreload
%autoreload 2

pywatemsedem API

Introduction

This tutorial describes the use of the classes and functions of the pywatemsedem Python package. This python package functions as a model API to prepare and process data to create all input-files for the WaTEM/SEDEM. The Python package also contains functions for post-processing the modeloutput, yet this is not handled in this notebook.

Note:

The example data available in the subfolder data/langegracht is preclipped to the catchment shape. Do note that out-of-bound rasters and shapes are automatically clipped by the inputted catchment vector or raster data layer, as long as the clips fully overlay with the catchment outline (i.e. not missing values).

Imports and example data

[ ]:
import geopandas as gpd
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pathlib import Path
import os

The example data are located in the test data folder

[ ]:
inputdata_folder = Path(r"..") / ".." / "tests" /  "data"
[ ]:
inputdata_folder.exists()

Define WaTEM/SEDEM exe

Pick it up the latest version from https://github.com/watem-sedem/watem-sedem/releases and put the exe in the folder of this notebook (or in a .env-file)

[ ]:
from dotenv import load_dotenv, find_dotenv
load_dotenv(find_dotenv())
[ ]:
watem_sedem_binary = Path(os.environ.get("WATEMSEDEM"))
[ ]:
watem_sedem_binary
[ ]:
watem_sedem_binary.exists()
[ ]:
watem_sedem_binary
[ ]:
import sys

Generate catchment

[ ]:
from pywatemsedem.catchment import Catchment

Give your catchment a name

[ ]:
name_catchment = 'langegracht'

Initialize the catchment with a catchment vector definition and a dtm raster.

[ ]:
rst_dtm = inputdata_folder  / "dtm.tif"
[ ]:
vct_catchment = inputdata_folder / "catchm_langegracht.shp"
[ ]:
vct_catchment.exists()
[ ]:
str(vct_catchment.resolve())

Feed the name of the catchment, the outline vector, the dtm raster, the desired resolution, the desired coordinate definition, the nodata-value and the year.

[ ]:
catchment = Catchment(name_catchment, vct_catchment, rst_dtm, 20, 31370, -9999)

Plot the mask

[ ]:
catchment.mask.plot()

Plot DTM

[ ]:
catchment.dtm.plot()

Input rasters

Clip the land-use, K-factor and CN soil type maps and convert to the right data format by the functions below

[ ]:
rst_kfactor = inputdata_folder / "K3.tif"
rst_landuse = inputdata_folder / "basemap_landuse.tif"
[ ]:
catchment.kfactor = rst_kfactor
[ ]:
catchment.kfactor.plot(nodata=-9999)
[ ]:
catchment.landuse = rst_landuse
catchment.landuse.plot()

Input vectors

Rivers and infrastructure

[ ]:
vct_river = inputdata_folder / "river.shp"
vct_infra_poly = inputdata_folder / "infrastructure.shp"
vct_infra_line = inputdata_folder / "roads.shp"
vct_water = inputdata_folder / "water.shp"
Assigning the river vector will generate:
- A river raster (with values -1 for river, else nodata/0)
- A river segments (values for every river segment)
[ ]:
catchment.vct_river = vct_river
[ ]:
catchment.vct_river.plot()
[ ]:
catchment.river.plot()

You can also have a look at the extracted segment

[ ]:
catchment.segments.plot()

Assign and plot infrastructure polygons and lines

[ ]:
catchment.vct_infrastructure_buildings = vct_infra_poly
catchment.infrastructure_buildings.plot()
[ ]:
catchment.vct_infrastructure_roads = vct_infra_line
catchment.infrastructure_roads.plot()
[ ]:
catchment.infrastructure.plot()
[ ]:
catchment.vct_water = vct_water
catchment.water.plot(nodata=-9999)

The UserChoices-object

The second element we have to defines is the user choices, variables and other paramters. We have chosen to define these choices in a different class/object. In this way the defined choices can be re-used in calculations for e.g. a different catchment.

First, we need to initiate a UserChoices-object

[ ]:
from pywatemsedem.userchoices import UserChoices
[ ]:
choices = UserChoices()

Make use of a preset default values for choices

[ ]:
default_choices = inputdata_folder / "userchoices.ini"
[ ]:
default_choices.exists()
[ ]:
choices.set_ecm_options(default_choices)
choices.dict_ecm_options
[ ]:
choices.set_model_version("WS")
[ ]:
choices.set_model_options(default_choices)
[ ]:
choices.set_model_variables(default_choices)
choices.dict_variables
[ ]:
choices.set_output(default_choices)
choices.dict_output

The Scenario-object

With the defined catchment and all the choices made by the user we can start to prepare all the necessary inputdata for a scenario.

A scenario-instance needs a valid catchment-instance and a valid userchoices-instance to be initiated. Here, we will use the catchment created above. Also as scenario-number is needed.

[ ]:
from pywatemsedem.scenario import Scenario
[ ]:
scenario_nr = 1
scenario = Scenario(catchment, 2019, scenario_nr, choices)

Add parcels information

[ ]:
scenario.vct_parcels = inputdata_folder / r"parcels.shp"
[ ]:
scenario.vct_parcels.geodata
[ ]:
scenario.parcels.plot(nodata=-9999)

Run model without any measures

[ ]:
scenario.composite_landuse = scenario.create_composite_landuse()
[ ]:
scenario.composite_landuse.plot()
[ ]:
scenario.cfactor = scenario.create_cfactor(bool(choices.dict_ecm_options["UseTeelttechn"]))
[ ]:
scenario.cfactor.plot()
[ ]:
scenario.ktc = scenario.create_ktc(choices.dict_variables["ktc low"],
                                   choices.dict_variables["ktc high"],
                                   choices.dict_variables["ktc limit"],
                                   choices.dict_model_options["UserProvidedKTC"])
[ ]:
scenario.ktc.plot(nodata=-9999)
[ ]:
scenario.prepare_input_files()
[ ]:
scenario.create_ini_file()
[ ]:
scenario.run_model(watem_sedem_binary)

Run model with grass strips

[ ]:
scenario_nr = 2
scenario = Scenario(catchment, 2019, scenario_nr, choices)
scenario.vct_parcels = inputdata_folder / r"parcels.shp"

Assign grass strips

[ ]:
scenario.vct_grass_strips = inputdata_folder / r"grass_strips.shp"
[ ]:
scenario.vct_grass_strips.plot(column="width")
[ ]:
scenario.choices.dict_ecm_options["UseGras"] = 1
[ ]:
scenario.composite_landuse = scenario.create_composite_landuse()
[ ]:
scenario.composite_landuse.plot()
[ ]:
scenario.cfactor = scenario.create_cfactor(bool(choices.dict_ecm_options["UseTeelttechn"]))
[ ]:
scenario.ktc = scenario.create_ktc(choices.dict_variables["ktc low"],
                                   choices.dict_variables["ktc high"],
                                   choices.dict_variables["ktc limit"],
                                   choices.dict_model_options["UserProvidedKTC"])

Prepare run and execute

[ ]:
scenario.prepare_input_files()
scenario.create_ini_file()
scenario.run_model(watem_sedem_binary)

Run model with buffers

[ ]:
scenario_nr = 3
scenario = Scenario(catchment, 2019, scenario_nr, choices)
scenario.vct_parcels = inputdata_folder / r"parcels.shp"
[ ]:
scenario.vct_buffers = inputdata_folder / r"buffers.shp"
[ ]:
scenario.choices.dict_ecm_options["Include buffers"] = 1
[ ]:
scenario.composite_landuse = scenario.create_composite_landuse()
scenario.cfactor = scenario.create_cfactor(bool(choices.dict_ecm_options["UseTeelttechn"]))
scenario.ktc = scenario.create_ktc(choices.dict_variables["ktc low"],
                                   choices.dict_variables["ktc high"],
                                   choices.dict_variables["ktc limit"],
                                   choices.dict_model_options["UserProvidedKTC"])
[ ]:
scenario.prepare_input_files()
scenario.create_ini_file()
scenario.run_model(watem_sedem_binary)

Run model with technical tillage measures

[ ]:
scenario_nr = 4
scenario = Scenario(catchment, 2019, scenario_nr, choices)
scenario.vct_parcels = inputdata_folder / r"parcels.shp"

Technical tillage measures are implemented at the level of a parcel, for which we can define a “reduction”. The column ‘C_reduct’ is used to reduce the final C-factor:

\[C_{factor,reduced}=C_{factor}∗(1-C_{reduction})\]
[ ]:
# We take all parcels with a crop code of 311 to reduce with 80 %.
scenario.vct_parcels.geodata.loc[scenario.vct_parcels.geodata["CODE"]==311, "C_reduct"] = 0.8

Enable source-oriented measures by setting ‘UseTeelttechn’ to one.

[ ]:
scenario.choices.dict_ecm_options['UseTeelttechn'] = 1
[ ]:
scenario.composite_landuse = scenario.create_composite_landuse()
scenario.cfactor = scenario.create_cfactor(bool(choices.dict_ecm_options["UseTeelttechn"]))
scenario.ktc = scenario.create_ktc(choices.dict_variables["ktc low"],
                                   choices.dict_variables["ktc high"],
                                   choices.dict_variables["ktc limit"],
                                   choices.dict_model_options["UserProvidedKTC"])
[ ]:
scenario.prepare_input_files()
scenario.create_ini_file()
scenario.run_model(watem_sedem_binary)
[ ]:
scenario.create_ini_file()
[ ]:
scenario.run_model(watem_sedem_binary)

Run model with forced routing

[ ]:
scenario_nr = 5
scenario = Scenario(catchment, 2019, scenario_nr, choices)
scenario.vct_parcels = inputdata_folder / r"parcels.shp"
[ ]:
scenario.choices.dict_model_options["Force Routing"] = 1
[ ]:
scenario.vct_force_routing = inputdata_folder / "force_routing.shp"
[ ]:
scenario.composite_landuse = scenario.create_composite_landuse()
scenario.cfactor = scenario.create_cfactor(bool(choices.dict_ecm_options["UseTeelttechn"]))
scenario.ktc = scenario.create_ktc(choices.dict_variables["ktc low"],
                                   choices.dict_variables["ktc high"],
                                   choices.dict_variables["ktc limit"],
                                   choices.dict_model_options["UserProvidedKTC"])
[ ]:
scenario.prepare_input_files()
scenario.create_ini_file()
scenario.run_model(watem_sedem_binary)
[ ]:
scenario.create_ini_file()
[ ]:
scenario.run_model(watem_sedem_binary)

Run model with specific outlets

[ ]:
scenario_nr = 6
scenario = Scenario(catchment, 2019, scenario_nr, choices)
scenario.vct_parcels = inputdata_folder / r"parcels.shp"
[ ]:
scenario.choices.dict_model_options
[ ]:
scenario.choices.dict_model_options["Manual outlet selection"] = 1
[ ]:
scenario.vct_outlets = inputdata_folder / "outlets.shp"
[ ]:
scenario.composite_landuse = scenario.create_composite_landuse()
scenario.cfactor = scenario.create_cfactor(bool(choices.dict_ecm_options["UseTeelttechn"]))
scenario.ktc = scenario.create_ktc(choices.dict_variables["ktc low"],
                                   choices.dict_variables["ktc high"],
                                   choices.dict_variables["ktc limit"],
                                   choices.dict_model_options["UserProvidedKTC"])
[ ]:
scenario.prepare_input_files()
scenario.create_ini_file()
scenario.run_model(watem_sedem_binary)

Run model without parcels

[ ]:
scenario_nr = 7
scenario = Scenario(catchment, 2019, scenario_nr, choices)
[ ]:
scenario.composite_landuse = scenario.create_composite_landuse()
scenario.cfactor = scenario.create_cfactor(bool(choices.dict_ecm_options["UseTeelttechn"]))
scenario.ktc = scenario.create_ktc(choices.dict_variables["ktc low"],
                                   choices.dict_variables["ktc high"],
                                   choices.dict_variables["ktc limit"],
                                   choices.dict_model_options["UserProvidedKTC"])
[ ]:
scenario.prepare_input_files()
scenario.create_ini_file()
scenario.run_model(watem_sedem_binary)
[ ]:
from pywatemsedem.geo.rasters import AbstractRaster
[ ]:
d = AbstractRaster(None,None)
[ ]: