pywatemsedem package

Subpackages

Submodules

pywatemsedem.buffers module

pywatemsedem.buffers.filter_outlets_in_arr_extension_id(gdf, arr, arr_dtm, arr_outlet=None)[source]

Map buffer outlet on extension id raster

This function filters outlet id’s to single outlet id, for every buffer. The function returns an array with single entries for every buffer id and multiple entries for every buffer extension id.

The algorithm takes a single pixel that

  • corresponds to the pixel defined in arr_outlet (use-defined).

OR

  • corresponds to the minimum dtm value in the extension of the buffer.

Parameters:
  • gdf (geopandas.GeoDataFrame) – Holding id’s (column: ‘buf_id’ (int)), all id’s should be present in arr and vice versa.

  • arr (numpy.ndarray) – Array with buffer outlet (<16 385) and extension id’s (16 385>=). This array can hold multiple entries for buffer outlet. All outlet id’s should be present in gdf

  • arr_dtm (numpy.ndarray) – DTM array, should have dimension of arr

  • arr_outlet (numpy.ndarray) – Holds number of forced outlets, should have dimension of arr.

Returns:

arr – Array with single entries for every buffer id and multiple entries for every buffer extension id.

Return type:

numpy.ndarray

pywatemsedem.buffers.process_buffer_outlets(gdf_outlets, gdf_buffer)[source]

Map user-defined outlets to buffers.

This function maps outlets to buffer id’s based on the overlap between the outlet definition and the buffer polygon definition.

#TODO: write test function

Parameters:
  • gdf_outlets (gpd.GeoDataFrame) – GeoDataFrame with a geometry definition.

  • gdf_buffer (gpd.GeoDataFrame) – Holding buffer id’s and geometry

Returns:

gdf_outlets – Updated outlets with buf id assigedn

Return type:

gpd.GeoDataFrame

pywatemsedem.buffers.process_buffers_in_river(gdf, arr, arr_river, nodata)[source]

This functions filters buffers from the buffer raster that overlap with a river

Parameters:
  • gdf (geopandas.GeoDataFrame) – Geopandas representation of arr, in buf_exid.

  • arr (numpy.ndarray) – Array with buffer outlet (<16 385) and extension id’s (16 385>=). This array can hold multiple entries for buffer outlet. All outlet id’s should be present in gdf.

  • arr_river (numpy.ndarray) – River raster, should be -1 and nodata

  • nodata (float) – Nodata value in arr_river.

Returns:

  • gdf (geopandas.GeoDataFrame) – Filtered

  • arr (numpy.ndarray) – Filtered

pywatemsedem.calibrate module

class pywatemsedem.calibrate.Calibration(ktc_low_min: float, ktc_low_max: float, ktc_high_min: float, ktc_high_max: float, steps: int)[source]

Bases: object

Data class for calibration parameters.

Data class used to store all commonly used variables for a calibration run.

Parameters:
  • ktc_low_min (float) – Lower boundary for ktc low value

  • ktc_low_max (float) – Upper boundary for ktc low value

  • ktc_high_min (float) – Lower boundary for ktc high value

  • ktch_high_max (float) – Upper boundary for ktc high value

  • steps (int) – Amount of steps between lower and upper ktc low/high values

check_input()[source]

Run a number of checks on input data of data class

define_parameter_grid()[source]

Defne parameter grid for ktc low and high

define_parameter_grid_resolution()[source]

Define the resolution of the parameter grid (2D, x and y resolution).

ktc_high_max: float
ktc_high_min: float
ktc_low_max: float
ktc_low_min: float
steps: int
pywatemsedem.calibrate.add_outlier_names_to_calibration_plot(df, ax, kind, lq=50, uq=150)[source]

Add outlier id or catchment name to outliers in evaluation plots.

Outlier names are plotted when the quotient of observed to predicted is lower or higher than respectively the lower or upper quotient (lq and uq). For description of plots see pywatemsedem.calibrate.plot_regression().

Parameters:
  • df (pandas.DataFrame) –

    Results of one set of ktc values with columns:

    • O_sy (float): observed (specific) sediment yield (ton).

    • P_sy (float): predicted (specific) sediment yield (ton/ha).

  • ax (matplotlib.pyplot.axis.)

  • kind (str) – “ssy” or “sy”.

  • lq (str) – Lower quotient limit.

  • uq (str) – Upper quotient limit.

Returns:

ax

Return type:

matplotlib.pyplot.axis.

pywatemsedem.calibrate.calculate_model_efficiency(df_calibration_data, df_calibration_results)[source]

Calculates the model efficiency (ME) for a calibration data set.

The model efficiency calculations are for now based on the Nash-Sutcliff efficiency criterion (NSE).

Parameters:
  • df_calibration_data (pandas.DataFrame) –

    DataFrame with all necessary data for a calibration. It contains at least the following columns:

    • name (str): the name of a catchment.

    • sy (float): the sediment yield (ton).

    • area (float): the area of the catchment (ha).

    • ssy (float): the specific sediment yield (ton/ha).

  • df_calibration_results (pandas.DataFrame) – DataFrame with all modelled sediment yields for different combinations of ktc-values and different catchments. For the definition of the dataframe, see pywatemsedem.calibrate.merge_calibration_results().

Returns:

df_me – DataFrame with calculated model efficiencies for all different combinations of ktc-values. Contains following columns:

  • ktc_low (float): ktc low value used in the model run.

  • ktc_high (float): ktc high value used in the model run.

  • ME sy (float): model efficiency computed based on sediment yield.

  • ME ssy (float): model efficiency computed based on specific sediment yield.

Return type:

pandas.DataFrame

Notes

Model efficiencies are computed based on observed and simulated yearly totals.

pywatemsedem.calibrate.calculate_ratio_ktc(df_ktc)[source]

Calculates the ratio between ktc low and ktc high

Parameters:

df_ktc (pandas.DataFrame) –

DataFrame with different comibinations of ktc-values. The DataFrame contains at least following columns:

  • ktc_low (float): ktc low value used in the model run.

  • ktc_high (float): ktc high value used in the model run.

Returns:

df_ktc – Identical DataFrame as the input DataFrame, but with an extra column: ratio_ktc (float).

Return type:

pandas.DataFrame

pywatemsedem.calibrate.calculate_regressions(df_calibration_results, calibration)[source]

Compute regression for plots

Parameters:
Returns:

df_regressions – DataFrame with the regression parameters for all combinations of ktc-values. The DataFrame contains following columns:

Return type:

pandas.DataFrame

pywatemsedem.calibrate.check_endpoint_throughput_coefficient(endpoint_coefficient: float)[source]

Check the endpoint (sewers and ditches) throughput coefficient used in pywatemsedem.calibrate.process_calibrationrun_output().

Raise error if the throughput coefficient is not within the defined ranges.

Parameters:

endpoint_coefficient (float) – Percentage of sediment load to captured in the endpoints (sewers and ditches) to consider for the computed predicted sediment load (see also column non river in scenario_x/modeloutput/calibration.txt).

pywatemsedem.calibrate.compute_denomitor_nash_sutcliffe(df_calibration_data, variable, squared_error)[source]

Compute the denomitor for the Nash-Sutcliffe model efficiency.

You can make use of squared or absolute errors to compute the denominator.

Parameters:
Returns:

denominator – Denominator of the Nash-Sutcliffe criterion.

Return type:

float

pywatemsedem.calibrate.compute_model_errors_sy(df_cal, variable)[source]

Compute model errors based on simulations and observations.

  • Errors: observation-prediction

  • Absolute errors: |observation-prediction|

  • Squared errors: (observation-prediction)$^2$

Parameters:
Returns:

df_cal – Updated with errors between simulation and observations.

Return type:

pandas.DataFrame

pywatemsedem.calibrate.compute_nash_sutcliffe(df_calibration_results, denominator, variable, squared_error=True)[source]

Compute Nash-Sutcliffe model efficiency for calibration results of WaTEM/SEDEM for a variable

Parameters:
Returns:

df_me – DataFrame with calculated model efficiencies for all different combinations of ktc-values. Contains following columns:

  • ktc_low (float): ktc low value used in the model run.

  • ktc_high (float): ktc high value used in the model run.

  • NS sy (float): Nash-Sutcliffe model efficiency computed based on sediment yield.

  • NS ssy (float): Nash-Sutcliffe model efficiency computed based on specific sediment yield.

Return type:

pandas.DataFrame

pywatemsedem.calibrate.linear_regression_evaluation_calibration(arr_observed, arr_predicted)[source]

Compute linear regression between observed and predicted values.

Parameters:
  • arr_observed (np.ndarray or pandas.Series) – Observed (specific) sediment yield.

  • arr_predicted (np.ndarray or pandas.Series) – Predicted (specific) sediment yield

Returns:

pywatemsedem.calibrate.merge_calibration_results(lst_df_calibration, caldata)[source]

Check if dimension of calibration space are equal to the one defined in the caldata instance (see pywatemsedem.calibrate.Calibration)

Merges a list of pandas.DataFrame with processed calibration model output

Parameters:
Returns:

df_calibration_results – DataFrame with all modelled sediment yields for different combinations of ktc-values. The DataFrame contains following columns:

  • name (string): name of the catchment.

  • O_sy (float): observed sediment yield.

  • O_ssy (float): observed specific sediment yield.

  • P_sy (float): predicted sediment yield.

  • P_ssy (float): predicted specific sediment yield.

  • (O_sy-P_sy)² (float): squared difference between observed and predicted sy.

  • (O_ssy-P_ssy)² (float): squared difference between observed and predicted ssy.

  • ktc_low (float): ktc low value used in the model run.

  • ktc_high (float): ktc high value used in the model run.

Return type:

pandas.DataFrame

pywatemsedem.calibrate.plot_model_efficiency(df_me, caldata, sy=True, contours=[-0.15, 0, 0.15, 0.3, 0.45, 0.6, 0.75])[source]

This function plots the calculated model efficiency as a function of ktc-low and ktc-high.

Parameters:
  • df_me (pandas.DataFrame) – Dataframe with the calculated model efficiencies for all combinations of ktc-values. See pywatemsedem.calibrate.calculate_modelefficiency() for the defintion of the dataframe.

  • caldata (pywatemsedem.core.calibrate.Calibration) – See pywatemsedem.calibrate.Calibration.

  • sy (bool, default True) – Plot the sediment yield (sy=True) or the specific sediment yield (sy=False).

  • contours (list, default [-0.15, 0, 0.15, 0.3, 0.45, 0.6, 0.75]) – List with values for contour lines.

Returns:

  • fig (matplotlib.pyplot.figure)

  • ax (matplotlib.pyplot.axes)

pywatemsedem.calibrate.plot_regression(df, ktc_low, ktc_high, kind='sy', label_outliers=False, labels=False)[source]

Generate regression plot for calibration

Parameters:
Returns:

  • fig (matplotlib.pyplot.figure)

  • ax1 (matplotlib.pyplot.figure)

pywatemsedem.calibrate.process_calibrationrun_output(txt_calibration, observed_sy, catchment_name, catchment_area, endpoint_coefficient=0.0)[source]

Processes the output-file of a calibration run for a given catchment

This function reads the calibration output file for a given catchement and calculates for every combination of ktc values the predicted specific sediment yield (P ssy) and calculates the squared difference between the observed and predicted (specific) sediment yield.

Parameters:
  • txt_calibration (str or pathlib.Path) – Path to the calibration-output file of a WaTEM/SEDEM model run, see here.

  • observed_sy (float) – The observed sediment yield for the catchment (in ton).

  • catchment_name (str) – The name of the catchment.

  • catchment_area (float) – The area of the catchment in ha.

  • endpoint_coefficient (float, default 0.) – This coefficient determines the percentual amount of the sediment load that is captured in endpoints (sewers and ditches). In percentage (% - e.g. 80%). See also pywatemsedem.calibrate.check_endpoint_throughput_coefficient().

Returns:

df_cal – DataFrame with all modelled sediment yields for different combinations of ktc-values. The DataFrame contains following columns:

  • name (string): name of the catchment.

  • O_sy (float): observed sediment yield (in ton).

  • O_ssy (float): observed specific sediment yield (ton/m$^2$).

  • P_sy (float): predicted sediment yield (in ton).

  • P_ssy (float): predicted specific sediment yield (ton/m$^2$).

  • (O_sy-P_sy) (float): difference between observed and predicted sy.

  • |O_sy-P_sy| (float): absolute difference between observed and predicted sy.

  • (O_sy-P_sy)² (float): squared difference between observed and predicted sy.

  • (O_ssy-P_ssy) (float): difference between observed and predicted ssy.

  • |O_ssy-P_ssy| (float): absolute difference between observed and predicted ssy.

  • (O_ssy-P_ssy)² (float): squared difference between observed and predicted ssy.

  • ktc_low (float): ktc low value used in the model run.

  • ktc_high (float): ktc high value used in the model run.

Return type:

pandas.DataFrame

pywatemsedem.catchment module

class pywatemsedem.catchment.Catchment(name, vct_catchment, rst_dtm, resolution, epsg_code, nodata, results_folder=None)[source]

Bases: Factory

Construct a new Catchment instance

The catchment class holds all static information for a catchment. The class considers all data of which the content is user-option-independent (i.e. pywatemsedem.userchoices.UserChoices.

Following properties can be set:

  • kfactor: K-factor raster.

  • landuse: base landuse raster.

  • river: river line vector.

  • water: water polygon vector

  • vct_infrastructure_buildings: polygon vector of infrastructure (typically buildings).

  • vct_infrastructure_roads: roads line vector (with optional attribute ‘paved’).

  • cnsoil: cn soil raster (CN-only).

Notes

Initialisation of mask, vector and raster handling is done with the help of the pywatemsedem factory class, see pywatemsedem.geo.factory.Factory.

property adjacent_edges

Getter dataframe adjacent edges/segment property

This property is generated by assigning a river line vector to the catchment class. Every row indicates a connection between two segments: segment from (column 1) flows into segment to (column 2). See here

Returns:

With columns, flow

  • from (int): from segment

  • to (int): to segment

Return type:

pandas.DataFrame

property catchment_area

Total area of the catchment

Returns:

float

Return type:

\(m^2\)

create_folder_structure()[source]

Creates a fixed folder structure for the model data

The folder layout will have the following directory structure:

├── homefolder
│    └── bekken folder / catchment folder
│         ├── Rsts
│         ├── Shps
static create_height_contours(rst_input, vct_output)[source]

Create height contours line vector based on a DTM raster

Parameters:
property dtm

Getter dtm raster

Returns:

Float64 raster with DTM height values.

Return type:

pywatemsedem.geo.rasters.AbstractRaster

property hydrological_soil_group

CN hydrological soil group raster

This raster (int) holds the four categories (see [2]):

  • A (value 1): Soils in this group have low runoff potential when thoroughly wet.

  • B (value 2): Soils in this group have moderately low runoff potential when thoroughly wet.

  • C (value 3): Soils in this group have moderately high runoff potential when thoroughly wet.

  • D (value 4): Soils in this group have high runoff potential when thoroughly wet.

Return type:

pywatemsedem.geo.rasters.AbstractRaster

property infrastructure

Get infrastucture raster

Get rasterized polygon and line vectors. The procedure adds the line data (roads) to the polygon data (buildings). As such buildings are considered as the base map.

Returns:

Raster containing following values:

  • -2: paved

  • -7: paved

Return type:

pywatemsedem.geo.rasters.AbstractRaster

Notes

Note that current module allows to either define a roads (1), buildings (2) or roads and buildings (3). If no roads or buildings are defined, an error is thrown.

property infrastructure_buildings

Getter rasterized infrastructure polygon vector

Returns:

Raster containing following values:

  • -2: paved

  • -9999: nodata

Return type:

pywatemsedem.geo.rasters.AbstractRaster

property infrastructure_roads

Getter rasterized infrastructure polygon vector

Returns:

Raster containing following values:

  • -2: paved

  • -7: paved

  • -9999: nodata

Return type:

pywatemsedem.geo.rasters.AbstractRaster

property kfactor

Getter K-factor raster

The K-factor raster is a raster holding K-values for every pixel (\(\frac{ton.h}{MJ.mm}\)).

Return type:

pywatemsedem.geo.rasters.AbstractRaster

property landuse

Getter background land-use raster

Returns:

The raster can following values:

  • nodata: nodata

  • -5: open water

  • -4: grass

  • -3: forest

  • -2: infrastructure

  • 10: agricultural fields

Return type:

pywatemsedem.geo.rasters.AbstractRaster

property pfactor

P-factor raster

The P-factor raster holds values between 0 and 1, and is the factor in the RUSLE equation which takes into account erosion control. In pywatemsedem, this factor is always set to 1, as erosion source-oriented control measures are accounted for in the C-factor.

Return type:

pywatemsedem.geo.rasters.AbstractRaster

property river

Getter river raster

Returns:

Raster containing following values:

  • -1: river

  • 0: no river

  • -9999: nodata

Return type:

pywatemsedem.geo.rasters.AbstractRaster

property river_segment_length

Total length of all river segments in the catchment

Return type:

float, meter

property routing

Getter river routing raster

See here

Returns:

Raster containing values from 0 to 8:

  • 0: do not route further

  • 1: route to upper pixel

  • 2: route to upper right pixel

  • 3: route to right pixel

  • 4: route to lower right pixel

  • 5: route to lower pixel

  • 6: route to lower left pixel

  • 7: route to left pixel

  • 8: route to upper left pixel

  • -9999: nodata

Return type:

pywatemsedem.geo.rasters.AbstractRaster or None

property segments

Getter river segments raster

See here

Returns:

Raster containing following values:

  • >0: segment_id

  • -9999: nodata

Return type:

pywatemsedem.geo.rasters.AbstractRaster

Notes

The number of segments is limited to int16.

static topologize_river(vct_input, vct_output, rst_mask, tolerance=None)[source]

Prepare topology of the river segments with SAGA-GIS

Parameters:
  • vct_input (str or pathlib.Path) – Line input vector

  • vct_output (str of pathlib.Path) – Topologized line output vector

  • rst_mask (str or pathlib.Path) – Mask raster (used for mapping)

  • tolerance (float) – If not None, the TOLERANCE command line argument of the saga topology command is given this value.

Returns:

property tubed_river

Assign underground river-line vector

The river tubed vector should be a line-vector file. No specific attributes should be defined.

Parameters:

vector_input (Pathlib.Path, str or geopandas.GeoDataFrame) – Line vector file.

property up_edges

Getter dataframe upstream edges/segment property

This property is generated by assigning a river line vector to the catchment class. See here

Returns:

With columns

  • edge (int): segment id

  • upstream edge (int): segment id of one of the upstream segment of the edge.

  • proportion (float): proportion of upstream edge flowing into edge. Lower than 1 when upstream edge flows into two edges.

Return type:

pandas.DataFrame

property vct_infrastructure_buildings

Getter infrastructure polygon vector

Returns:

Polygon vector with attribute “paved”

Return type:

pywatemsedem.geo.vectors.AbstractVector

property vct_infrastructure_roads

Getter infrastructure line vector

property vct_river

Assign river-line vector

The river vector should be a line-vector file. No specific attributes should be defined.

Parameters:

vector_input (Pathlib.Path, str or geopandas.GeoDataFrame) – Line vector file.

property vct_water

Getter water polygon vector

Returns:

Polygon vector with attribute “value”

Return type:

pywatemsedem.geo.vectors.AbstractVector

property water

Getter water polygon vector

Returns:

Raster containing following values:

  • -5: open water

  • -9999: nodata

Return type:

pywatemsedem.geo.rasters.AbstractRaster

zip()[source]

Zip catchment folder

pywatemsedem.catchment.valid_dtm(func)[source]

Check if you have defined a DTM.

pywatemsedem.catchment.valid_vct_infra_line(func)[source]

Check if infrastructure vectors are defined

pywatemsedem.catchment.valid_vct_infra_poly(func)[source]

Check if infrastructure vectors are defined

pywatemsedem.catchment.valid_vct_parcels(func)[source]

Check if infrastructure vectors are defined

pywatemsedem.catchment.valid_vct_river(func)[source]

Check if you have defined a river vector.

pywatemsedem.cfactor module

pywatemsedem.cfactor.create_cfactor_degerick2015(rivers, infrastructure, composite_landuse, mask, vct_parcels=None, vct_grass_strips=None, cfactor_aggriculture=0.37, use_source_oriented_measures=False)[source]

Creates the C-factor raster based on river, infrastructure and composite landuse.

The C-factor is set to (in order)

  • 0 if the landuse is river or infrastructure.

  • scaled according to the width of the grass strips.

  • C-factor of the crop for parcels (any model possible).

  • 0.001 if the landuse is forest

  • 0.01 if the landuse is grass land

  • 0 if the landuse is pond

  • 0.01 if the landuse is grass strip (where not grass strip vector is defined)

Left-over pixels are set to 0.37

Parameters:
  • rivers (numpy.ndarray) – River raster, all rivers must have a no-nodata or no-0-value.

  • infrastructure (numpy.ndarray) – Infrastructure raster, all infrastructure pixels must have a no-nodata or no-0 value.

  • composite_landuse (numpy.ndarray) – WaTEM/SEDEM composite landuse. (see here).

  • mask (pywatemsedem.geo.rasters.AbstractRaster) – Mask

  • vct_parcels (geopandas.GeoDataFrame, default None) – Dataframe holding C-factor values, columns: - C_factor (float)

  • vct_grass_strips (geopandas.GeoDataFrame, default None) – Dataframe holding C-factor values, columns: - C_factor (float)

  • cfactor_aggriculture (numpy.ndarray , default 0.37) – Default C-factor value for left-over pixels

  • use_source_oriented_measures (bool) – True / False. In case True, vct_parcels should contain the column ‘C_reduct’.

Returns:

  • vct_grass_strips (geopandas.GeoDataFrame) – Grass strips vector added with C-factor.

  • arr_cfactor (numpy.ndarray)

Notes

  1. If users input parcels and/or grass strips vectors, then they are responsible of defining ‘C_factor’ and/or grass strip ‘width’. #TODO: optimize

  2. C-reduction based on source-oriented measures (‘C_reduc’) are only applied at the level of parcel polygons (see pywatemsedem.cfactor.reduce_cfactor_with_source_oriented_measures()).

pywatemsedem.cfactor.reduce_cfactor_with_source_oriented_measures(c_factor, c_reduction, use_source_oriented_measures)[source]

Reduce the C-factor with the amount defined in ‘C_reduction’ for every element in the vector. This formule is used to implement impact of source oriented measures on C-factor.

Formula:

Parameters:
  • c_factor (numpy.ndarray) – 1D-array of C-factor values, vary between 0 and 1.

  • c_reduction (numpy.ndarray) – 1D array of reduction coefficients, vary between 0 and 1.

  • use_source_oriented_measures (bool) – True / False. In case True, vct_parcels should contain the column ‘C_reduction’.

Returns:

c_factor – Reduced C-factors.

Return type:

numpy.ndarray

pywatemsedem.cn module

pywatemsedem.cn.process_cn_raster(hsg, parcels, season, composite_landuse, parcels_ids, cn_table, nodata=-9999)[source]

Creates the CN-map for a given year and season.

Current implementation executes three steps:

  • Generate a CNmaxID based on CN type id (1-11, associated to crop), contour plowing measures (0/1/2), hydrological conditions ({0,1->3}, {unknown, poor to good}), contour_id (0/1).

  • Couple CN-values based in CNmaxID and season for all parcels (based on parcel id)

  • Coupled CN-values 99, 99 and 1 to land-uses river (-1) , infrastructure (-2) and water (-5).

Parameters:
  • hsg (numpy.ndarray) – Raster that holds values from 1 to 4 according to hydrological soil group (A, B, C and D), see [1] and [2], for more info, see documentation in function :attr: pywatemsedem.catchment.Catchment.hydrological_soil_group`.

  • parcels (geopandas.GeoDataFrame) –

    Parcels polygon data with columns:

    • NR (int): unique id, should be the same as in parcels_ids (i.e. parcels_ids is a rasterized version of the parcels dataframe).

    • ”CN_type_id” (int): crop specific CN id (1-11).

    • ”HydroCond” (str): Either “Poor”, “Fair” or “Good”.

    Optional columns:

    • gewasrest (int): are the ‘gewasresten’ yes (1) or no (0).

    • contour (int): is contour plowing applied yes (1) or no (0).

    • ntkerende (int): is there non-plowing tillage yes (1) or no (0).

    • verslemp (int): has silting occurred yes (1) or no (0).

  • season (str) – Either “fall”, “spring”, “summer”, “winter”

  • composite_landuse (numpy.ndarray) – A composite land-use raster. Typically, it defines the landuse from non-agricultural pixels.

  • parcels_ids (numpy.ndarray) – A parcels id raster, holding unique id’s per parcel.

  • cn_table (pandas.DataFrame) – Table holding CNmax values per hydrological soil group and per CNmaxID.

  • nodata (float, default -9999) – Nodata value

Returns:

arr_cn – Raster with values between 1 (low CN, low run-off) and 100 (high CN, high run-off)

Return type:

numpy.ndarray

Notes

  1. The CNtype_id is crop/cover-specific. Note that for general land-uses reported in the base landuse map (no crop info present), CN is set equal to a predefined CNmax:

    • forest: CN = CNmax is based on CNmaxID 9030

    • grassland: CN = CNmax is based on CNmaxID 5020

    • grass: CN = CNmax is based on CNmaxID 6000

  2. CN is set equal to 99 for infrastructure, rivers and pools (no infiltration)

  3. The contour_id is computed by:

    • contour_id = 1 if CNtype_id in {2, 3, 4} and contour = 0

    • contour_id = 2 if CNtype_id in {2, 3, 4} and contour = 1

    • contour_id = 0 else

  4. The HydroCond_id is computed by:

    • HydroCond_id = 1 if HydroCond is equal to ‘Poor’.

    • HydroCond_id = 2 if HydroCond is equal to ‘Fair’.

    • HydroCond_id = 3 if HydroCond is equal to ‘Good’.

    • HydroCond_id = 0 if HydroCond is equal to NULL.

  5. Gewasrest_id is equal to gewasrest (1 or 0)

  6. When the CNtype_id is equal to NULL, CNtype_id is set to 4, HydroCond_id to 1 and contour_id to 1.

References

pywatemsedem.compare_scenario module

class pywatemsedem.compare_scenario.DeltaScenario(pp1, pp2, resmap=None)[source]

Bases: object

Construct a DeltaScenario instance with two instances of PostProcess

Parameters:
  • pp1 (pywatemsedem.postproces.PostProcess) – First PostProcess instance of scenario used for the comparison.

  • pp2 (pywatemsedem.postproces.PostProcess) – Second PostProcess instance of scenario used for the comparison.

  • resmap – Folder path used to write results to

Examples

Define inputs
>>> pp1 = PostProcess(molenbeek, 1, 2019, 20, 31370)
>>> pp2 = PostProcess(molenbeek, 2, 2019, 20, 31370)
Run
>>> delta_scenario = DeltaScenario(pp1,pp2)
>>> delta_scenario.comparison_total_sediment_file()
>>> ...
check_input(pp)[source]

Check the type of input given to DeltaScenario class

Parameters:

pp (pywatemsedem.postproces.PostProcess) – A PostProcess instance of scenario used for the comparison.

check_rasterprop()[source]

Check if the raster properties are equal for both scenario’s

comparison_total_sediment_file()[source]

Compare the values in the total sediments file

Returns:

df – Holding results of summary values for run for scenario 1 and 2, and the difference between those values.

  • sc1: values for general statistics scenario 1

  • sc2: values for general statistics scenario 2

  • difference: difference between statistics scenario 1 and 2

Return type:

pandas.DataFrame

difference_grids()[source]

Make difference grids for a number of files

zip_files()[source]

Zip output folder of deltascenario

pywatemsedem.defaults module

pywatemsedem.defaults.SAGA_FLAGS = '-f=q'

no progress report

pywatemsedem.errors module

exception pywatemsedem.errors.PywatemsedemRasterValueError[source]

Bases: Exception

Raise error when input data attribute values are not conform required attributes values

exception pywatemsedem.errors.PywatemsedemVectorAttributeError[source]

Bases: Exception

Raise error when input data are not conform the required pywatemsedem attributes.

exception pywatemsedem.errors.PywatemsedemVectorAttributeValueError[source]

Bases: Exception

Raise error when input data attribute values are not conform required attributes values

pywatemsedem.errors.attribute_continuous_value_error(source, tag, attribute, lower=None, upper=None)[source]

Value error for continuous attributes in input vector

Raises error when an attribute of an input vector contains out-of-bound values.

Parameters:
  • source (geopandas.GeoDataFrame) – Input vector.

  • tag (str) – Internal naming.

  • lower (int or float, default None) – Lower boundary, if None: no boundary.

  • upper (int or float, default None) – Upper boundary, if None: no boundary.

pywatemsedem.errors.attribute_discrete_value_error(source, tag, attribute, allowed_values, classes=None)[source]

Value error for discrete attributes in input vector

Raises error when an attribute of an input vector contains incorrect discrete values.

Parameters:
  • source (geopandas.GeoDataFrame) – Input vector.

  • tag (str) – Internal naming.

  • attribute (str) – Column name

  • allowed_values (set of int and/or float) – Allowed values

  • classes (set of string, default None) – Name of classes of values, if None: not considered.

pywatemsedem.errors.missing_attribute_error_in_vct(source, tag, req_attributes)[source]

Missing attribute error in vectors

Raises error when not all required attributes/columns are present in input vector.

Parameters:
  • source (geopandas.GeoDataFrame) – Input vector.

  • tag (str) – Internal naming.

  • req_attributes (set) – Required attributes in input source.

pywatemsedem.errors.raster_discrete_value_error(raster_array, tag, allowed_values, classes=None)[source]

Value error for discrete attributes in input raster

Raises error when an attribute of an input raster contains incorrect discrete values.

Parameters:
  • raster_array (numpy.ndarray) – Input raster.

  • tag (str) – Internal naming.

  • allowed_values (list) – Allowed values

  • classes (list) – Name of classes of values, if None: not considered.

pywatemsedem.grasstrips module

pywatemsedem grass strips processing functions

pywatemsedem.grasstrips.add_boundary_rows_cols_to_arr(arr)[source]

Add boundary rows and columns to an array, set values to zero.

Parameters:

arr (numpy.ndarray)

Returns:

With two rows added to the top and bottom, and two columns added to the left and right

Return type:

numpy.ndarray

pywatemsedem.grasstrips.compute_number_of_non_zero_neighbours(arr, nodata=None, mode=1)[source]

Compute number of non-zero neighbour (eight) elemnts for every array element.

This algorithm computes how many neighbours of a pixel are not equal to zero (and not equal to nodata.)

Parameters:
  • arr (numpy.ndarray) – Input array with valid values: (nodata, 0, >0) Nodata values are considered as 0-values. >0 values are considerd as 1-values

  • nodata (float, default None) – Values to ignore, if equal to None this is not considered.

  • mode (int) –

    Mode of expansion:

    1: Consider ordinal + cardinal direction. 2: Cardinal direction. 3: Ordinal direction.

Returns:

arr_out – Array with for each element the number of non-zero neighbours.

Return type:

numpy.ndarray

Notes

  1. Nodata values are not considered!

  2. Boundaries are set to zero.

  3. Grass strips within trigger pixels are not considered.

pywatemsedem.grasstrips.core_expand_grass_strips_with_triggers(arr_grass_strips, arr_grass_strips_neighbours, arr_triggers_neighbours, arr_parcels=None, nodata=None)[source]

Grass strip expansion algorithm based on raster inputs.

The grass strips expansion algorithm executes following steps:

  1. Expand the grass strips with one pixel. This implies that adjacent (ordinal and/or cardinal directions, depending on mode, see pywatemsedem.grasstrips.compute_number_of_non_zero_neighbours()) pixels to a grass strip pixel are classified as grass strip pixels.

  2. The added grass strip pixels can only be retained if following rules are satisfied:

    • The added grass strip pixels is in the direct vicinity of (one of 8 neighbours) a trigger pixel (river, infrastructure pixel).

    • (optional) The added grass strip pixels can only be withheld when it belongs to a parcel to which the original grass strip was part of.

Parameters:
Returns:

arr_grass_strips – Grass strips array with grass strips expanded at the trigger boundary edge cases.

Return type:

numpy.ndarray

Notes

  1. This algorithm is not able to make a distinction between two separate grass strip in one parcel.

  2. For the expansion of the grass strips, the source grass pixels overlapping with the triggers are not considered. This implies that if a specific gras strip completely overlaps with triggers, no expansion will be done.

pywatemsedem.grasstrips.create_grass_strips_from_line_string(line_string, polygons=None, width=20, width_polygon=20)[source]

Add bank grass strips

Adds bank grass strips with a standard length of 20m, along input LineStrings. If required, clip by polygons.

Parameters:
  • line_string (geopandas.GeoDataFrame) – Geopandas dataframe with LineString

  • polygons (geopandas.GeoDataFrame, default None) – Geopandas dataframe with Polygon

  • width (int, optional, default 20) – Width (m) of the bank grass strip stored in the attribute table.

  • width_polygon (int, optional, default 20) – width (m) of the bank grass strip polygon

Returns:

grass_strips

  • width (float): width of grass strips

  • scale_ktc (float): scale ktc, see pywatemsedem.grassttips.scale_ktc_with_grass_strip_width()

Return type:

geopandas.GeoDataFrame

Notes

The width is the estimated true width of the grass strip, whereas the width polygon the used width is for mapping the shape to a raster. Typically, this width polygon is set to the resolution to ensure all LineString-surrounding pixels are mapped as grass strips. Note that the width polygon is not the estimated true width, it is a mapping (shape => raster) width.

pywatemsedem.grasstrips.estimate_ste(simulated_sediin, simulated_sediout)[source]

Compute the estimated \(\hat{STE}\) based on simulated sediment output/input

This function computes the sediment trapping efficiency based on the model-simulated incoming and outgoing sediment for each grass strip.

Parameters:
  • simulated_sediin (numpy.ndarray) – Simulated incoming sediment per grass strip

  • simulated_sediout (numpy.ndarray) – Simulated outgoing sediment per grass strip

Returns:

Estimated STE (STEe)

Return type:

float

Notes

  1. The estimated \(\hat{STE}\) is referred to with a hat to make a distinction between the theoretical STE defined in pywatemsedem.grasstrips.scale_ktc_with_grass_strip_width()

  2. Note that the STE can be negative in case there is more erosie produced in the grass strip then there is incoming into the grass strip.

pywatemsedem.grasstrips.expand_grass_strips_with_triggers(arr_grass_strips: ndarray, arr_triggers: ndarray, arr_parcels: ndarray = None, nodata=None, mode=1)[source]

Expand grass strips based on neighbouring trigger pixels.

This algorithm expands grass strips with one neighbouring pixel when a neighbouring is a trigger pixel. The expansion can be bound within one unique parcel (optional).

Parameters:
Returns:

arr_grass_strips – See pywatemsedem.grassstrips.core_expand_grass_strips_with_triggers()

Return type:

np.ndarray

Examples

>>> # triggers (for instance river, road)
>>> arr_triggers = np.array([[1, 0, 0, 0],
>>>                        [0, 1, 0, 0],
>>>                        [0, 0, 1, 0],
>>>                        [0, 0, 0, 1]])
>>> # parcel ids
>>> arr_parcels_id = np.array([[0, 3, 3, 3],
>>>                            [1, 0, 2, 2],
>>>                            [1, 1, 0, 2],
>>>                            [1, 1, 1, 0]])
>>> # input gras id's
>>> arr_grass_strips = np.array([[0, 0, 0, 0],
>>>                            [0, 0, 0, 0],
>>>                            [0, 0, 0, 1],
>>>                            [0, 0, 0, 1]])
>>> # execute
>>> arr_out = expand_grass_strips_with_triggers(
>>>    arr_grass_strips, arr_triggers, arr_parcels_id)

Notes

1. For algorithm description, see pywatemsedem.grasstrips.core_expand_grass_strips_with_triggers()

For visual example, see image below:

../_images/expand_grass_strips_at_infr_parcel_boundary.png
  1. All input arrays should have the same nodata value in their raster.

pywatemsedem.grasstrips.extract_grass_strips_from_parcels(vct_parcels, year, resmap=PosixPath('/home/runner/work/pywatemsedem/pywatemsedem'), tag='')[source]

Extract grass buffers from parcels using the Thinnes criterium

Extract grass buffers from parcels using the Thinnes criterium (>0.3) of a given year.

! EXPERIMENTAL - NOT IN USE YET !

Parameters:

year (int) – Year for which to extract the grass buffers.

pywatemsedem.grasstrips.get_neighbour_grass_strips_ids_array(vct_grass_strips, rst_params, width_polygon=20)[source]
pywatemsedem.grasstrips.get_width_grass_strips(arr_width_gras_strips, arr_gras_polygon_perimeter, arr_gras_polygon_area, resolution)[source]

Get the width of the gras strips for gras strips with width being equal to np.nan ‘unknown’ or zero.

If width cannot be estimated, estimate is based on polygon shape.

Parameters:
  • arr_width_gras_strips (numpy.ndarray or pandas.Series) – 1D array holding in each row width of the gras strip. note: this can all be zeros or np.nan

  • arr_gras_polygon_perimeter (numpy.ndarray or pandas.Series) – 1D array holding in each row the perimeter of each gras polygon

  • arr_gras_polygon_area (numpy.ndarray or pandas.Series) – 1D array holding in each row the area of each gras polygon

  • resolution (int)

Returns:

arr_width_gras_strips – 1D array holding in each row (estimated) width of the gras strip

Return type:

numpy.ndarray or pandas.Series

pywatemsedem.grasstrips.process_grass_strips(arr_grass_strips_ids, arr_river, arr_infr, nodata, arr_parcels=None, expand_grass_strips=False)[source]

Create grass strips raster for WaTEM/SEDEM

This function create the grass strips raster that is used as input creating the composite WaTEM/SEDEM parcels raster (see here). The output of this function provides a raster with -6-values for grass strip pixels.

Parameters:
  • arr_grass_id (numpy.ndarray) – Grass strips id’s-raster. Pixel belonging to one grass strip share the same unique id. Other values should be have nodata-value described in the parameter profile.

  • arr_river (numpy.ndarray) – River raster. River pixels should have the value differing from 0 or nodata (defined in profile).

  • arr_infr (numpy.ndarray) – Infrastructure raster. Infrastructure pixels should have the value differing from 0 or nodata (defined in profile).

  • arr_parcels (numpy.ndarray, default None) – Parcel ids raster. Pixel belonging to one parcel share the same unique id. The value zero indicates that no parcel is present. If None, the expansion is not limited to the boundaries of a parcel.

  • nodata (int) – Nodata value

  • expand_grass_strips (bool, default False) –

    Use expand grass strips algorithm with rivers as triggers, see

    pywatemsedem.grasstrips.expand_grass_strips_with_triggers()

Returns:

  • arr_grass_strips_ids (numpy.ndarray) – Expanded grass strips id’s-raster.

  • arr_grass (numpy.ndarray) –

    -6-value-raster of grass strips id’s-raster, formatted according to composite

    WaTEM/SEDEM parcels raster (see here).

Notes

All the input rasters must have the same nodata-value.

pywatemsedem.grasstrips.scale_cfactor_linear(arr_width: ~numpy.ndarray, resolution: (<class 'int'>, <class 'float'>) = 20, upper_cfactor=0.37, lower_cfactor=0.01)[source]

Scale function for ktc based on a lineair interpolation between the defined lower and upper boundary condtion, and the resolution.

Parameters:
  • arr_width (numpy.ndarray) – See pywatemsedem.grasstrips.scale_cfactor_with_grass_strip_width()

  • resolution (int) – Spatial resolution of raster grid on which grass strips are projected.

  • upper_cfactor (float, default 0.01) – Upper allowed C-factor.

  • upper_cfactor – Lower allowed C-factor.

Returns:

arr_cfactor – See pywatemsedem.grasstrips.scale_cfactor_with_grass_strip_width()

Return type:

numpy.ndarray

Notes

The C-factor (\(C\)) is weighted by the grass strips width (\(w\)) and resolution (\(r\)):

\[C = 0.01*\frac{w}{r}+0.37*\frac{r-w}{r}\]

Considering an lower and upper C-factor of 0.01 and 0.37, widths are capped to model resolution.

References

Deproost, P., Renders, D., Van de Wauw, J., Van Ransbeeck, N., Verstraeten, G., 2018. Herkalibratie van WaTEM/SEDEM met het DHMV-II als hoogtemodel: eindrapport. Brussel.

pywatemsedem.grasstrips.scale_cfactor_with_grass_strips_width(arr_width: ndarray, scaling_function_cfactor: Callable, **parameters)[source]

Scale C-factor value for grass strips according to the width of the grass strip.

Parameters:
  • arr_width (numpy.ndarray) – Vector array with grass strips widths (m)

  • scaling_function_cfactor (callable) – Scaling function

  • parameters – Scaling function parameters as required by the scaling function.

Returns:

arr_cfactor – Vector array with C-factor values for grass strips (-)

Return type:

numpy.ndarray

pywatemsedem.grasstrips.scale_ktc_linear(arr_width: ~numpy.ndarray, resolution: (<class 'int'>, <class 'float'>) = 20, ktc_low: (<class 'int'>, <class 'float'>) = 3, ktc_high: (<class 'int'>, <class 'float'>) = 12)[source]

Scale function for ktc based on a lineair interpolation between the defined lower and upper boundary condtion, and the resolution.

Parameters:
Returns:

Notes

1. ktc values for grass strips are determined by a lower and upper boundary of ktc. The weighting is defined by the width of the grass strip compared to the resolution of the model. This approach is defined in Deproost et al. (2018).

2. The estimated STE values are determined by using the formula of Verstraete et al. (2006):

\[STE (percent) = [1 - * ktc_{var}/ktc_{high}]*100\]

with:

\(ktc_{var}\) (1/m): the ktc values for the grass strips;

References

Deproost, P., Renders, D., Van de Wauw, J., Van Ransbeeck, N., Verstraeten, G., 2018. Herkalibratie van WaTEM/SEDEM met het DHMV-II als hoogtemodel: eindrapport. Brussel.

Verstraeten, G., Poesen, J., Gillijns, K., Govers, G., 2006. The use of riparian vegetated filter strips to reduce river sediment loads: an overestimated control measure? Hydrol. Process. 20, 4259–4267. https://doi.org/10.1002/hyp.6155

pywatemsedem.grasstrips.scale_ktc_with_grass_strip_width(arr_width: ndarray, scaling_function: Callable, **parameters)[source]

Scale ktc value for grass stripts according to the width of the grass strip.

The ktc parameters (which determines the amount of sediment which is routed downstream) for a grass strip varies as a function of the width of the grass strip.

Parameters:
  • arr_width (numpy.ndarray) – Vector array with grass strips widths (m)

  • scaling_function (callable) – Scaling function

  • parameters – Scaling function parameters as required by the scaling function.

Returns:

  • arr_ktc (numpy.ndarray) – Vector array with ktc values for grass strips (1/m)

  • arr_ste (numpy.ndarray) – Vector array of sediment trapping efficiency of grass strips (under the assumption of a flat plane, see Notes)

Notes

The theoretical ‘sediment trapping efficiency’ (STE) is interpreted as the trapping efficiency of a grass strips on a homogenous lineair slope. In other words, the slope plane can be defined as a flat plane (as in: can be defined in by two dimensions). This is also sometimes referred to as a linear slope (see Verstraete et al. (2006))

References

Verstraeten, G., Poesen, J., Gillijns, K., Govers, G., 2006. The use of riparian vegetated filter strips to reduce river sediment loads: an overestimated control measure? Hydrol. Process. 20, 4259–4267. https://doi.org/10.1002/hyp.6155

pywatemsedem.grasstrips.scale_ktc_zhang(arr_width: ~numpy.ndarray, ktc_high: (<class 'int'>, <class 'float'>) = 12, k: (<class 'int'>, <class 'float'>) = 90.9, b: (<class 'int'>, <class 'float'>) = 0.446)[source]

Scale function for ktc based on a Zhang et al. (2010).

Parameters:
Returns:

Notes

1. The ktc valeus for grass strips are determined by using emperical sediment trapping efficiency (STE) values in the equation of Verstraete et al. (2006):

\[ktc_{var} = (ktc_{high}/100)*(1-STE/100)\]

with:

\(ktc_{var}\) (1/m): the ktc values for the grass strips;

The STE can be determined by using the emperical findings of Zhang et al. (2010):

with:

\(K\) = 90.9;

\(b\) = 0.446;

\(gs\) (m) = width grass strips

References

Zhang, X., Liu, X., Zhang, M., Dahlgren, R.A., Eitzel, M., 2010. A Review of Vegetated Buffers and a Meta-analysis of Their Mitigation Efficacy in Reducing Nonpoint Source Pollution. J. Environ. Qual. 39, 76–84. https://doi.org/10.2134/jeq2008.0496

pywatemsedem.ktc module

pywatemsedem.ktc.create_ktc(composite_landuse, cfactor, mask, ktc_low, ktc_high, ktc_limit, grass=None, correction_width=True)[source]

Create ktc raster based on C-factor raster

The ktc raster is generated by classifying low and high erosion potential based on the C-factor and ktc_limit (i.e. C_factor < ktc_high -> ktc_low, C_factor > ktc_limit -> ktc_high).

The ktc value for landuse rivers, infrastructure and ponds is set to 9999 (all sediment is routed downwards).

The ktc values for grass strips are scaled according to their width (see pywatemsedem.ktc.scale_ktc_gdf_grass_strips()).

Parameters:
Returns:

  • arr_ktc (numpy.ndarray) – kTC values.

  • grass (pywatemsedem.geo.vectors.AbstractVector) – Updated grass strips

pywatemsedem.ktc.scale_ktc_gdf_grass_strips(gdf_grass_strips, ktc_low, ktc_high)[source]

Scale the ktc values for grass strips in the grass strips dataframe

Parameters:
  • gdf_grass_strips (geopandas.GeoDataFrame) – Grass strips geodataframe, ‘width’ and ‘scale_ktc’ should be present as columns.

  • ktc_low (float) – Transport coefficient for land covers with low erosion potential

  • ktc_high (float) – Transport coefficient for land covers with high erosion potential

Returns:

gdf_grass_strips – Updated with the KTC value and the linear sediment trapping efficiency (STE_linear). For definition STE_linear, pywatemsedem.grasstrips.scale_ktc_with_grass_strip_width().

Return type:

geopandas.GeoDataFrame

Notes

Whether the kTC is scaled for the grass strips depends on the grass strip attribute “scale_ktc”. If it is not scaled, the ktc_low-value is assigned.

pywatemsedem.parcelslanduse module

class pywatemsedem.parcelslanduse.ParcelsLanduse(landuse_core: ndarray, river: ndarray, water: ndarray, infrastructure: ndarray, mask: ndarray, nodata: float, landuse_parcels: ndarray = None, parcels: ndarray = None, grass_strips: ndarray = None)[source]

Bases: object

Class to generate parcels land-use raster.

This parcels land-use raster is used as raster input for WaTEM/SEDEM pywatemsedem.

Parameters:
create_parcels_landuse_raster(scheme='Degerickx2015_adjusted')[source]

Create parcels landuse raster with a defined scheme.

Parameters:

scheme (str, default 'Degerickx2015_adjusted')

Returns:

Parcels landuse raster

Return type:

numpy.ndarray

grass_strips: ndarray = None
infrastructure: ndarray
landuse_core: ndarray
landuse_parcels: ndarray = None
mask: ndarray
nodata: float
parcels: ndarray = None
river: ndarray
water: ndarray
pywatemsedem.parcelslanduse.create_parcels_landuse_degerick2015(landuse_core, river, water, infrastructure, mask, nodata, landuse_parcels=None, parcels=None, grass_strips=None)[source]

Create parcels landuse raster as with Degerickx and Van Den Broeck [1] scheme (version VPO).

This schemes map rasters from top to bottom : rivers, water, infrastructure, grass strips, landuse from parcels data source, parcelsand finally pywatemsedem landuse. Incemental mapping to the parcels landuse raster is done by mapping pixels from the input raster to empty pixels in the landuse raster (see also pywatemsedem.scenario.map_input_array_on_array()). The pywatemsedem landuse raster is used to fill gaps.

Parameters:
  • landuse_core (numpy.ndarray) – See pywatemsedem.scenario.ParcelsLanduse

  • river (numpy.ndarray) – See pywatemsedem.scenario.ParcelsLanduse

  • water (numpy.ndarray) – See pywatemsedem.scenario.ParcelsLanduse

  • infrastructure (numpy.ndarray) – See pywatemsedem.scenario.ParcelsLanduse

  • mask (numpy.ndarray) – See pywatemsedem.scenario.ParcelsLanduse

  • landuse_parcels (numpy.ndarray, default None) – See pywatemsedem.scenario.ParcelsLanduse

  • parcels (numpy.ndarray, default None) – See pywatemsedem.scenario.ParcelsLanduse

  • grass_strips (numpy.ndarray, default None) – See pywatemsedem.scenario.ParcelsLanduse

Returns:

arr – Parcels landuse raster

Return type:

numpy.ndarray

References

[1] Degerickx, J., Van Den Broeck, M., 2015. Handleiding CN_WS.KU Leuven, Leuven,

Belgium.

pywatemsedem.parcelslanduse.get_source_landuse(landuse, maxprc_id, rasterio_profile, arr_mask)[source]

Get landuse raster

Parameters:
  • landuse (pywatemsedem.geo.vector.AbstractVectors)

  • maxprc_id (int) – Maximum perceelskaart id.

  • rasterio_profile (dict) – Gdal dictionary holding all metadata for idrisi rasters.

  • arr_mask (numpy.ndarray) – Binaire array defining model domain (1 else 0).

pywatemsedem.parcelslanduse.map_input_array_on_array(arr, arr_input, nodata, method='only_empty')[source]

Map an input array on an other array with a method

Parameters:
  • arr (numpy.ndarray) – To map to array

  • arr_input (numpy.ndarray) – To map array

  • nodata (float) – No data value in arr_input array

  • method (str, default "only_empty") –

    Mappig method:

    • ”only_empty”: only map values from input array to empty (nodata) items in array.

Return type:

numpy.ndarray

pywatemsedem.plots module

Extra functions that can be used for plotting

pywatemsedem.plots.plot_cumulative_sedimentload(df, fname)[source]

Make a cumulative plot of the ordered sediment load values (high to low)

Parameters:
  • df (pandas.DataFrame) – Data with cumulative sediment load - value (float): sediment load value - cum_perc (float): cumulative percentage - rank (float): rank

  • percentage (int) – Percentage (%) of cumulative sediment load that is to be analysed

  • fname (str or pathlib Path) – File path of output figure

pywatemsedem.plots.plot_time_series_for_in_river_points(variable, folder, resmap='', convert_output=True, output_per_segment=False)[source]

Plot timeseries. All timeseries are stored in the postprocesfolder as a png-file.

Parameters:
  • variable (string) – ‘Q’: plot with discharge and rainfall vs time ‘Sedigram’: plot with sediment concentration vs time ‘Sediment’: plot with total sediment mass vs time

  • folder (pathlib Path, optional) – path to folder where CNWS results are saved

  • resmap (pathlib Path, optional) – path to folder to save pngs

  • convert_output (bool, optional) – True if units in minutes

  • output_per_segment (bool, optional) – True if plot has to be per segment

pywatemsedem.postprocess module

class pywatemsedem.postprocess.PostProcess(name, resolution, scenario_label, year, epsg)[source]

Bases: Factory

Initialisation of the postprocess class.

This class is used to process output data layers of data processing pywatemsedem.

Parameters:
  • name (str) – Name of catchment to which results of scenario run are written too

  • scenario_nr (int) – scenario number

  • year (int) – simulation year

  • resolution (int) – model resolution

  • epsg (int, default 31370) – epsg-code

Examples

>>> from pywatemsedem.postprocess import PostProcess()
>>> pp = PostProcess(r"molenbeek", 1, 2019, 20, 31370) # note that the folder
>>> #modelbeek/scenario_1 and molenbeek/scenario_1/2019 must exist
>>> pp.make_routing_vct() #make a vector file of the text routig file.
add_sediment_to_subcatchments(vct_subcatchments)[source]

Adds the sediment input of every river segment to the corresponding subcatchment.

For every subcatchment the attribute sedar is calculated. Sedar is calculated as sedimentinput/area subcatchment

Parameters:

vct_subcatchments (str or pathlib.Path) – File path of vectorfile which holds the subcatchments subject to inspection.

add_segment_results_to_vct()[source]

Adds the sedimentinput to every riversegment and calculates the sedlen-argument.

Sedlen is calculated as sedimentinput/length river segment.

The resulting shapefile is stored in self.segmShp.

aggregate_sedout_parcel(gdf_routing)[source]

Aggregate sediment leaving on the scale of single parcels.

Parameters:

gdf_routing (pandas.DataFrame) – dataframe format of routing file, indicating which target cells flor in which source cells.

Returns:

df_prckrt – prckrt added with sediout for every pixel defined per parcel

Return type:

pandas.DataFrame

analyse_cumulative_sediexport(df_sediexport, profile, percentage, delta_perc=10, plot=False)[source]

Analyse cumulative sediment load by sorting SediExport values from high to low

Parameters:
  • df_sediexport (pandas.DataFrame) – Data Frame format of SediExport raster (format: see pywatemsedem.utils.raster_array_to_pandas_dataframe())

  • profile (rasterio.profiles) – see rasterio.open()

  • percentage (int) – x percentage highest load that the user wants to analyse

  • delta_perc (int) – delta used to iterate percentage

  • plot (bool, default False) – True if you want a cumulative SediExport plot

Returns:

  • df_sediexport (pandas.DataFrame) – Data Frame format of SediExport raster (format: see pywatemsedem.utils.raster_array_to_pandas_dataframe()) added with:

    • cum_perc (float): cumulative highest load

    • perc (float): percentage highest load

    • class (int): class as defined by delta_perc

  • percentage (str) – updated percentage

assign_filenames(fmap_results)[source]

Use filestructure defined in the package to appoint names of files

Parameters:

fmap_results (str or pathlib.Path) – Folder path (scenario_XX)

assign_values_df_summary(df_summary, index, bekken, bekken_id, summary_values, unit='ton')[source]

Assign values of summary to the summary dataframe

Parameters:
  • df_summary (pandas.DataFrame) – Dataframe holding all summary values

  • index (int) – Row index to write summary values to

  • bekken (str) – Name of the (sub)catchemnt

  • bekken_id (int) – Id of the bekken

  • summary_values (dict) –

    • erosion (float): amount of netto erosion (watererosion < 0)

    • deposition (float): amount of netto deposition (watererosion > 0)

    • river (float): amount of sediment load to river.

    • outside_domain (float): amount of sediment routed out of boundaries catchment

    • buffers (float): amount of sediment trapped in buffers.

    • endpoints (float): amount of sediment load to endpoints.

  • unit (str, optional) – ‘ton’ or ‘kg’

Returns:

df_summary – updated dataframe holding all summary values

Return type:

pandas.DataFrame

calculate_areas_prckrt()[source]

Calculates the areas and relative areas of all landuse classes in the parcelmap

check_condition_files(condition, exists)[source]

Set conditions coupled to the presence of a file

Parameters:
  • condition (str) – Specific condition coupled to the presence of a file

  • exists (bool) – File exist (True/False)

Notes

The condition defines which pywatemsedem option (see :func:pywatemsedem.CNWS.UserChoices) should be considered as True/False given that a file (exists) is present in the pywatemsedem filesystem. For example: the presence of the buffers.rst raster in the modeloutput indicates that the Include buffers option was set to True in the pywatemsedem data processing.

compute_netto_erosion_parcels(join=True)[source]

Compute the netto erosion per parcel.

For an explanation of the definition of netto erosion, see pywatemsedem.postprocess.compute_netto_erosion_parcels()

Parameters:

join (bool, optional) – Join the results of the netto erosion raster calculations to the parcel shape file.

compute_sewer_in_per_catchment(vct_subcatchments)[source]

Compute sewer in per subcatchment

Parameters:

vct_subcatchments (str or pathlib.Path) – File path of vectorfile which holds the subcatchments subject to inspection

compute_source_sinks(percentage=50)[source]

Source-sink algorithm to identify sources of erosion (parcels or subcatchments) that lead to sediment sinks in the river (or sewer).

Parameters:

percentage (int) – X % highest load that the user wants to analyse

compute_statistics_rasters_per_polygon_vector(vct)[source]

Compute statistics for raster for an input polygon vector

Parameters:

vct (pathlib.Path) – Polygon vector file

Returns:

Geopandas dataframe of vct with statistics per polygon.

Return type:

geopandas.GeoDataFrame

convert_output_rsts_to_ton()[source]

Convert the units for rasters sediout, sediin, sediexport and watereros from kg to ton.

convert_rst_sediexport_to_vct()[source]

Convert the sediexport raster to a vector file.

convert_rst_sewerin_to_vct()[source]

Convert the sewerin raster to a vector file.

couple_sediout_routing(cols_out=None)[source]

Couple sediout of raster map values to routing file.

See pywatemsedem.postprocess.couple_sediout_routing()

Returns:

gdf_routing_sediout – See pywatemsedem.postprocess.couple_sediout_routing()

Return type:

geopandas.GeoDataFrame

get_total_sediment()[source]

Make nice output table

Returns:

Sum statistic (columns value) for variables (indices).

Return type:

pandas.DataFrame

identify_export_parcel()[source]

Identify total sediment leaving a parcel.

Returns:

df_prckrt – See pywatemsedem.postprocess.PostProcess.aggregate_sedout_parcel()

Return type:

geopandas.GeoDataFrame

identify_priority_areas(nmax=10, flag_merge=True)[source]

Identify priority areas

Parameters:
  • nmax (str) – Maximum number of priority areas.

  • flag_merge (bool) – Merge the separate priority areas to one shapefile.

Note

Algorithm to identify priority areas:

  1. Load sediout raster as an array

  2. Identify pixel with highest sediout value i.

  3. Identify subcatchment j coupled to this highest sediout value i.

  4. Set all sediment values within subcathcment j to no_value.

  5. Repeat 2 until 4, for a number of iterations (nmax).

identify_priority_catchments_based_on_highest_loads(nmax=10)[source]

Identify the priority catchments.

Identify the pixels with the highest loads in the sediout raster, sort them from high too low, and delineate the subcatchment for these pixels up until nmax catchments. See pywatemsedem.postprocess.identify_individual_priority_catchments().

Parameters:

nmax (int) – Maximum number of catchment to identify

identify_sinks(percentage)[source]

Identify X % highest sinks of sediment.

Analyse cumulative sediment load by sorting SediExport from high to low, and identify sediment sinks.

Parameters:
  • percentage (int) – x percentage highest load that the user wants to analyse

  • rst_sinks (str) – filename of raster that contains sink point (values in raster should be between 0 and 100 %)

Returns:

  • df_sediexport (pandas.DataFrame) – Data Frame format of SediExport raster (format: see pywatemsedem.utils.raster_array_to_pandas_dataframe())

  • percentage (int) – Updated x percentage highest load that the user want to analyse

identify_sinks_in_routing()[source]

Identify sinks based on whether more than one routing vector goes to a pixel.

identify_subcatchments_to_buffers()[source]

Define the seperate subcatchments to the buffer outlets

See pywatemsedem.postprocess.identify_subcatchments_to_buffers()

intersect_sedioutparcels_with_subcatchments(rst_subcatchment_sinks, df_sediout_parcel)[source]

Find the intersection between the subcatchments of the sinks and the parcels that lie within these subcatchments.

The sediout_parcel map is used to identify the sediment exported out of a parcel.

Parameters:
  • rst_subcatchment_sinks (str or pathlib.Path) – File path of the subcatcmsinks raster

  • df_sediout_parcel (pandas.DataFrame) – DataFrame of the sediout parcel map. This map holds for every pixel the total amount of sediment that is transported outside the parcel in which the parcel lies.

make_facts()[source]

Make a textfile with a number of stats about the simulation

make_missing_routing_vct_saga()[source]

Make a routing vector file based on routingfile with missing

make_routing_vct(extent=None, tile_number=None, tag='')[source]

Make a routing vector file based on routingfile

Parameters:
  • extent (list) – list holding value of extent to consider, xmin,ymin,xmax,ymax

  • tilenumber (int) – id of tile

  • tag (str) – tag to add to filename

merge_overlapping_catchments(gdf_subcatchmpriority, merge=True)[source]

Merge overlapping catchments and reassign priorities for overlapping catchments.

Parameters:
  • gdf_subcatchmpriority (geopandas.GeoDataFrame) – Catchment shapes with number of catchment.

  • merge (bool, default True) – Merge the separate priority areas to one shapefile.

merge_sediout_and_cumulative(segments_to_retain=None)[source]

Merge SediOut.rst (sediment output on every land pixel) and Cumulative.rst (sediment output in every river pixel).

It is possible to retain only certain river segments in the merged raster. Therefore a list with all segmentnumbers must be given to the parameter segements_to_retain. The segements not retained will get value 0 in the resulting raster.

Parameters:

segments_to_retain (list) – list of ids of segments one wishes to retain in analysis

merge_vct_sinks()[source]

Merge vct_sewerin and vct_sediexport to one sinks shapefile.

process_and_check_filename(fmap_results, subfolder, filename, extension, arguments, mandatory, condition, arguments_input)[source]

Build full filename and set conditions coupled to the presence of a file

Parameters:
  • fmap_results (str or pathlib.Path) – Folder path (scenario_XX)

  • subfolder (str or pathlib.Path) – Folder path in which a specific file ‘filename’ resides

  • filename (str) – File path (without full path, without extension, with string formatting %)

  • extension (str) – Extension of the file (e.g. .tif, .shp, ..)

  • arguments – Argument for the string formatting

  • mandatory (int) – Indicate whether file is a mandatory file (0/1)

  • condition – Condition coupled when file is present (e.g. Include buffers, Include sewers, ..)

Returns:

full_filename – File path

Return type:

pathlib.Path

process_buffers(**kwargs)[source]

Overwrite function

read_total_sediment()[source]

Load the total sediment file

See pywatemsedem.utils.load_total_sediment_file()

Returns:

dict_total_sediment – See pywatemsedem.utils.load_total_sediment_file()

Return type:

dict

property routing

Set modeloutput routing

Parameters:

routing_file (pathlib.Path) – See here

Returns:

with columns:

  • row (float)

  • col (float)

  • targetcol1 (float): target 1 col

  • targetrow1 (float): target 1 row

  • targetcol2 (float): target 2 col

  • targetrow2 (float): target 2 row

  • part1: share (in [0,1])

  • part2: share (in [0,1])

Return type:

pandas.DataFrame

property routing_non_river

Getter routing (no river routing) long format

River routing is removed from the routing table

Returns:

with columns:

  • row (float)

  • col (float)

  • targetcol (float): target col

  • targetrow (float): target row

  • part: share (in [0,1])

Return type:

pandas.DataFrame

select_routing_to_outsidecatchment()[source]

Exports all routing vectors to the outside of the catchment

set_prckrt_nodata()[source]

Set nodata to ‘WaTEM/SEDEM perceelskaart’

property sinks

Getter Sinks attribute.

split_sewerin()[source]

Split the sewerin raster with the sewer_id raster.

See pywatemsedem.postprocess.split_endpoints_in_raster()

write_erosion_deposition_raster()[source]

Write erosion and deposition ratser based on watereros

zip_folder()[source]

Zip output folder of scenario_x

pywatemsedem.postprocess.aggregate_sediin_and_sediout_grass_strips(df_routing_grass)[source]

Compute the load in and out of a grass strips, so efficiencies can be computed.

Parameters:

df_routing_grass (pandas.DataFrame) –

See pywatemsedem.process_output.open_txt_routing_file():

  • targetrow (float): target row of pixel

  • targetcol (float) target column of pixel

  • sediin (float): incoming sediment pixel

  • sediout (float): outgoing sediment pixel

  • gras_id_source (float): grass strip id for source, -9999 if not a grass strip.

  • gras_id_target (float): grass strip id for target, -9999 if not a grass strip.

Returns:

df_efficiency – Sediment load flowing in and flowing out grass strip with the columns:

  • gras_id_target (float): target grass_id

  • gras_id_source (float): target grass_id

  • sediin (float): incoming sediment in grass strip

  • sediout (float): outgoing sediment out of grass strip

  • eSTE (float): estimated sediment trapping efficiency, see pywatemsedem.grasstrips.estimate_ste()

  • sed (float): amount of sedimentation

Return type:

pandas.DataFrame

Notes

gras_id_target and gras_id_source are equal and refers to the gras_id (target).

pywatemsedem.postprocess.check_if_file_exists(full_filename, mandatory)[source]

Check if the specified file exist on disk

Parameters:
  • full_filename (str or pathlib.Path) – File path of the to check file

  • mandatory (bool) – Indicate whether the file is mandatory or not

Returns:

File exists (True/False)

Return type:

bool

pywatemsedem.postprocess.compute_cdf_sediment_load(df, column_value, resmap, tag=None, no_data=None, ignore_negative_values=False, plot=False)[source]

Compute the cdf of sediment load in ‘column_value’ in the dataframe df

Parameters:
  • df (pandas.DataFrame) – Dataframe to compute cdf for - column_value (float): sediment load values

  • column_value (str) – Column in ‘df’ to compute cdf for

  • resmap (str or pathlib.Path) – Folder path to which write figure to

  • no_data (float, optional) – No_data value in ‘column_value’

  • ignore_negative_values (float, optional) – Ignore negative values in column_value

  • plot (str, optional) – Write plot to disk (True/False)

Returns:

df – Updated dataframe with cdf

  • column_value (float): sediment load values

  • cum_sum (float): cumulative sum of sediment load

  • cdf (float): cumulative distribution estimate

Return type:

pandas.DataFrame

pywatemsedem.postprocess.compute_efficiency_grass_strips(txt_routing, rst_grass_strips, rst_prckrt, rst_sediout)[source]

Compute statistics for grass strips:

  1. Compute the individual sediment input and output per routing element

  2. Compute the incoming and outgoing sediment per gras_id

  3. Compute the total incoming and outgoing sediment aggregated over all grass strips

Parameters:
  • txt_routing (str or pathlib.Path) – File path of the WaTEM/SEDEM routing table

  • rst_grass_strips (str or ppathlib.Path) – raster grass strips with id’s filename

  • rst_prckrt (str or pathlib.Path) – raster CNWS perceelskaart

  • rst_sediout (str or pathlib.Path) – File path WaTEM/SEDEM output raster ‘SediOut_kg.rst’

Returns:

  • sediment_load_grass_strips_in (float) – Total sediment load streaming into all gras strips (kg)

  • sediment_load_grass_strips_out (float) – Total sediment load streaming out of all gras strips (kg)

  • df_efficiency (pandas.DataFrame) – Sediment load flowing in and flowing out grass strip with the columns:

    • gras_id_target (float): grass_id

    • gras_id_source (float): grass_id

    • npixels_t (float: number of pixels of target grass strip

    • sediin (float): total incoming sediment in grass strip (kg)

    • sediout (float): total outgoing sediment out of grass strip (kg)

    • eSTE (float): estimated sediment trapping efficiency, see pywatemsedem.grasstrips.estimate_ste() (%)

    • sed (float): amount of sedimentation (kg)

Note

gras_id_target and gras_id_source are equal and refers to the gras_id.

pywatemsedem.postprocess.compute_netto_ero_parcel(arr_netto_erosion_parcel, resolution)[source]

Compute netto erosion for one parcel.

Compute the netto erosion for one parcel (only zero or non negative values). Negative values imply that no erosion or net deposition occurs.

Parameters:
  • arr_netto_erosion_parcel (numpy.ndarray) – Numpy array with netto erosion values (<=0) for pixels of one parcel

  • resolution (int)

Returns:

List with total, mean, std dev netto erosion for array, and area of the array

Return type:

list

Note

1. The formula for the netto erosion per parcel (\(NE_{parcel}\)) is the following

\[NE_{parcel} = (1/n) sum_i^n (NE_i)/res^2\]
with:
  • \(NE_i\): netto erosion for pixel \(i\) (\(n\) pixels in parcel) (ton/year). This netto erosion is derived from the watereros raster, in which positive values (deposition) are set to zero.

  • \(res\): model resulution (m).

2. The array arr_netto_erosion_parcel can only contain non-positive numbers, as it only takes into account netto erosion.

pywatemsedem.postprocess.compute_netto_ero_prckrt(arr_prckrt, arr_watereros, arr_parcels_ids, resolution)[source]

Calculates the netto erosion for every parcel.

Compute the netto erosion for all parcels defined in the parcel raster.

  • Set all pixels where sedimentation (arr_watereros>0) in arr_prckrt occurs to zero.

  • Identify all pixels in arr_prckrt with the same parcel id.

  • Compute the sum, mean and standerd deviation of the netto erosion is computed for all selected pixels (only where erosion occurs) in the considered parcel.

Parameters:
  • arr_prckrt (numpy.ndarray) – WaTEM/SEDEM modelinput perceelskaart

  • arr_watereros (numpy.ndarray) – WaTEM/SEDEM modelouput watereros map

  • arr_parcels_ids (numpy.ndarray) – Array of raster format of parcels shapefile

  • resolution (int) – Raster resolution

Returns:

dict_netto_ero – {key:value} = {parcel_id:lst_statistics}

  • parcel id: int

  • lst_statistics: list containing of the following elements:

    • total_netto_erosion (float): total netto erosion ( ton/pixel/year)

    • mean_netto_erosion (float): mean netto erosion (ton/ha/year)

    • std_dev_netto_erosion (float): standard deviation netto erosion (kg/pixel/year)

    • arr_parcel (float): area of parcel (ha)

Return type:

dict

Note

  1. The watereros raster defines netto erosion and deposition. There are two cases that exist:

    • The total available sediment \(S_A\) is smaller (or equal) than the transport capacity \(TC\). In this case netto erosion will occur at the rate of the mean annual soil rate (computed by RUSLE).

    • The available sediment \(S_A\) is larger than the transport capacity \(TC\). If the incoming sediment \(S_i\) is higher than \(TC\) than netto deposition will occur \(S_i-TC\). If the \(S_i\) is lower than \(TC\) than netto erosion will occur at \(TC-S_i\)

2. The id’s of the percelen raster is used to loop, and not the id’s in the WaTEM/SEDEM perceelskaart. This format is used, as the end product should make statements on the level of parcels raster and not the ‘WaTEM/SEDEM perceelskaart’ (the parcels raster differs from the WaTEM/SEDEM perceelskaart, in the way it only contains information of parcels, and not other land covers).

pywatemsedem.postprocess.compute_netto_erosion_parcels(rst_prckrt, rst_watereros, rst_parcels_ids, resolution=20, fmap='results', flag_write=False, flag_join_vct_parcels=True)[source]

Calculates the netto erosion for every parcel.

Computes the netto erosion for every parcel by identifying the pixels netto erosion in a parcel and summing up these values. Netto erosion values are defined in the watereros raster, in which netto erosion is defined as a negative number, and netto deposition is defined as a positive number. Only negative numbers are considered for the computation of netto erosion.

Parameters:
  • rst_prckrt (string or pathlib.Path) – File path of the CNWS modelinput perceelskaart, note that the parcels_ids are limited by int16 (for WaTEM/SEDEM Pascal)

  • rst_watereros (string or pathlib.Path) – File path of the CNWS modelouput watereros map

  • rst_parcels_ids (string or pathlib.Path) – File path of the rasterfile holding the parcels_ids, not limited by int16

  • resolution (int, default 20)

  • fmap (str, optional, default 'results') – Output map

  • flag_write (bool, default False) – Flag to indicate whether results should be written to disk

Returns:

df_netto_erosion – DataFrame holding statistics for every parcel with the columns:

  • sum_netto_erosion (float): total netto erosion (ton/pixel/year)

  • average_netto_erosion (float): mean netto erosion (ton/ha/year)

  • std_dev_netto_erosion (float): standard deviation netto erosion (kg/pixel/year)

  • arr_parcel (float): area of parcel (ha)

Return type:

pandas.DataFrame

Note

1. Two rasters of the WaTEM/SEDEM perceelskaart are feeded to this function. The first one is a int16, the other is float64. The float64 parcel id’s are used over the int16, because they go higher in maximum value. This is relevant for doing the analysis on large catchments.

2. For details on the computation of netto erosion per parcel, see pywatemsedem.postprocess.compute_netto_ero_prckrt()

pywatemsedem.postprocess.compute_statistics_sediout_outside_domain(arr_sediout, arr_id, df_routing, profile)[source]

Compute amount of sediout routing outside domain.

Parameters:
  • arr_sediout (numpy.ndarray) – WaTEM/SEDEM sediout raster.

  • arr_id (numpy.ndarray) – An unique array id array, sediout outside domain is grouped by these id’s. Should be integers or floats!

  • df_routing (pandas.DataFrame) – Loaded WaTEM/SEDEM routing dataframe

  • profile (rasterio.profile)

Returns:

Series holding sediout outside domain per id.

Return type:

pandas.Series

pywatemsedem.postprocess.convert_arr_from_kg_to_ton(rst_in, rst_out)[source]

Set values of all pixels of a raster divided by 1000 (kg -> ton)

Parameters:
  • rst_in (str or pathlib.Path) – File path of input raster to set no data values

  • rst_out (str or pathlib.Path) – File path of output raster with no data values

pywatemsedem.postprocess.convert_rst_sinks_to_vct(rst_in, vct_out, kind, epsg='EPSG:31370')[source]

Convert a sinks raster to a vector file.

A sinks raster is defined as a raster holding captured sediment loads (i.e. rst_sewerin, rst_sediexport).

Parameters:
  • rst_in (str or pathlib.Path) – Input raster subject to convert to shape

  • kind (str) – ‘sewer’ or ‘river’

Returns:

vct_out – Filename of the shapefile of the sinks

Return type:

pathlib.Path

pywatemsedem.postprocess.couple_sediout_routing(vct_routing, rst_sediout, epsg, cols_out=None)[source]

Couple the sediout raster values to the vector routing file

Parameters:
  • vct_routing (str or pathlib.Path) – File path of vector routing, see pywatemsedem.io.modeloutput.make_routing_vct()

  • rst_sediout (str or pathlib.Path) – File path WaTEM/SEDEM output raster ‘SediOut_kg.rst’

  • epsg (str) – Format “EPSG:XXXXX”

  • cols_out (list, optional) – Columns to output

Returns:

gdf_routing – Loaded vector file, for format see pywatemsedem.io.modeloutput.make_routing_vct(). Columns added:

  • sediout (float): Total Sediment output (scale:parcel) from pixel

  • sediout1 (float): Sediment output coupled to arrow current pixel

  • sediout2 (float): Sedimout output coupled to other output arrow current pixel

  • cum_sum (float): Cumulative sediment output based on sediout1

  • cum_perc (float): Cumulative percentage (%)

Return type:

geopandas.GeoDataFrame

pywatemsedem.postprocess.filter_grass_strips_with_prckrt(df_grass_strips, df_prckrt, profile_grass_strips)[source]

Use the CNWS ‘perceelskaart’ to filter grass strips (lay-over infr. and river cells over gras_buffer_id)

Parameters:
Returns:

df_grass_strips – filtered data, see pywatemsedem.postprocess.merge_grass_strip_id_and_sediout_to_routing()

Return type:

pandas.DataFrame

pywatemsedem.postprocess.get_filename(df_datastructure_files, index, subfolder, year, simulations, scenario)[source]

Get filename from datastructure with year, simulation and scenario

Parameters:
  • df_datastructure_files (pandas.DataFrame) – See pywatemsedem.core.postprocess.read_filestructure_flanders()

  • index (any series index) – index of position dataframe

  • subfolder (str) – subfolder

  • year (int) – year of the simulation

  • simulations – name of the simulation, usually catchment name

  • scenario (str) – scenario tag

Returns:

  • filename (pathlib.Path) – specific filename

  • mandatory (int) – indicates wheter a file is mandatory or not

pywatemsedem.postprocess.get_stats_cfactor(rst_cfactor, rst_prckrt)[source]

Get statistics ktc-raster for specific land-uses

The mean and standard deviation of the cfactor raster is computed, for the lande-use ‘agriculture’ and ‘grass strips.

Parameters:
  • rst_cfactor (str or pathlib.Path) – File path of ktc raster.

  • rst_prckrt (str or pathlib.Path) – File path of WaTEM/SEDEM ‘perceelskaart’ raster

Returns:

output – Dictionary with statistics of ktc for all agriculture and grass strip (gs) pixels. Keys:

  • mean_cfactor_agr (float): mean ktc value of all agriculture pixels.

  • std_cfactor_agr (float): standard deviation of all agriculture pixels.

  • mean_cfactor_gs (float): median ktc value of all grass strip pixels.

  • std_cfactor_gs (float): standard deviation of all grass strip pixels.

Return type:

dictionary

pywatemsedem.postprocess.get_stats_ktc(rst_ktc, rst_prckrt)[source]

Get statistics ktc-raster for specific land-uses

The mean and standard deviation of the ktc raster is computed, for the lande-use ‘agriculture’ and ‘grass strips’.

Parameters:
Returns:

output – Dictionary with statistics of ktc for all agriculture and grass strip (gs) pixels. Keys:

  • mean_ktc_agr (float): mean ktc value of all agriculture pixels.

  • std_ktc_agr (float): standard deviation of all agriculture pixels.

  • mean_ktc_gs (float): median ktc value of all grass strip pixels.

  • std_ktc_gs (float): standard deviation of all grass strip pixels.

Return type:

dictionary

pywatemsedem.postprocess.get_tuple_datastructure(df_datastructure_files, index)[source]

Get one record of filestruture

Parameters:
  • df_datastructure_files (pandas.DataFrame) – See pywatemsedem.core.postprocess.read_filestructure_flanders()

  • index

Returns:

f – with “folder”, “filename”, “extension”, “argument”, “mandatory”, “condition”

Return type:

tuple

pywatemsedem.postprocess.identify_subcatchments_to_buffers(rst_buffers, vct_buffers, txt_routing_nonriver, resmap, profile)[source]

Identify subcatchment to each one of the buffers

Parameters:
  • rst_buffers (str or pathlib.Path) – File path of WaTEM/SEDEM buffer raster

  • vct_buffers (str or pathlib.Path) – File path of buffers polygons

  • txt_routing_nonriver (str or pathlib.Path) – File path of the WaTEM/SEDEM routing table without river routing included

  • resmap (str or pathlib.Path) – Folder path of results folder

  • profile (rasterio.profiles) – see rasterio.open()

pywatemsedem.postprocess.merge_grass_id_to_routing(df_routing, df_grass_strips, cols, field)[source]

Merge the gras_id with the source, target1 and target2 pixels

Parameters:
Returns:

df_routing_merged – See pywatemsedem.process_output.open_txt_routing_file() with

TO DO

Return type:

pandas.DataFrame

pywatemsedem.postprocess.merge_grass_strip_id_and_sediout_to_routing(df_grass_strips, df_sediout, df_routing)[source]
Merge the id of the grass strips and the sediout (also pd list-format)

to routing df.

Filter grass strips which are not of landuse type -6 (‘weide’) with ‘WaTEM/SEDEM perceelskaart’

Parameters:
  • df_grass_strips (pandas.DataFrame) –

    • col (int): col

    • row (int): row

    • val (int): gras_id

  • df_sediout (pandas.DataFrame) –

    • col (int): col

    • row (int): row

    • val (fload): outgoing sediment

  • df_routing (pandas.DataFrame) – See pywatemsedem.process_output.open_txt_routing_file()

Returns:

df_routing_grass_id – See pywatemsedem.process_output.open_txt_routing_file(), holding columns of df_routing and additional columns:

  • gras_id_source (int): gras_id value of the source pixel

  • gras_id_target1 (int): gras_id value of the target1 pixel

  • gras_id_target2 (int): gras_id value of the target2 pixel

Return type:

pandas.DataFrame

pywatemsedem.postprocess.process_filename(fmap_results, subfolder, filename, extension, arguments, arguments_input)[source]

Format full filename

Parameters:
  • fmap_results (str or pathlib.Path) – Folder path where pywatemsedem (scenario_x) input and output is saved

  • subfolder (str or pathlib.Path) – Folder path in which a specific file ‘filename’ (relative path) resides

  • filename (str or pathlib.Path) – File path (without full path, without extension, with string formatting %)

  • extension (str or pathlib.Path) – Extension of the file

  • arguments (str or pathlib.Path) – Argument for the string formatting of filename

  • arguments_input (dict) – Holding the {“year”:year, “scenario”: scenario, “catchment_name”: catchment_name}

Returns:

full_filename – Full filename (absolute path, with filled in string formatting)

Return type:

pathlib.Path

Note

String formatting in the code is done with ‘%’ as the filename variable changes of content and is not accesable with f-strings.

pywatemsedem.postprocess.read_filestructure(txt_filestructure=None, sep=',')[source]

Read the pywatemsedem filestructure flanders file containing an overview of the files used for pywatemsedem flanders.

The filestructure contains information on files written on disk by pywatemsedem. This file is used by the pywatemsedem.core.postprocess.PostProcess object and pywatemsedem.core.merge_scenarios.SpatialMergeScenarios.

The filestructure pywatemsedem file can be used for to regenerate the filenames in a scenario_x folder without having to have the pywatemsedem objects loaded in memory (i.e. handy for starting a PostProcess instance from any simulation).

Parameters:
  • txt_filestructure (str or pathlib.Path, default None) – File path of table holding all data files/folder path references used in pywatemsedem flanders.

  • sep (str, default ",") – Delimiter of the text file.

Returns:

df_filestructure_flanders

  • tag_variable (str): unique tag used in code to identify file.

  • prefix_variable (str): prefix used for unique tag (depending on whether the file is a raster, text file, vector).

  • folder (str): subfolder in which file can be found in scenario.

  • filename (str): filename without specified arguments

  • argument (str): arguments such as year (int), catchment name (str), scenario label (str)

  • extension (str): extension of the file.

  • mandatory (int): indicate whether file is a mandatory file to run WaTEM/SEDEM.

  • condition (str): indicates whether presence of file is related to a WaTEM/SEDEM option.

  • default_value (float): default value (only for rasters)

  • generate_nodata (int): indicate whether a file must be made replacing 0’s to nan.

  • postprocess (int): use generating for postprocessing.

  • consider__ (int): state whether the file has to be loaded (0) or has to be generated (1).

Return type:

pandas.DataFrame

Note

  1. When no text data set file is defined, than the default defined in this package is used.

  2. Although the filestructure applies to pywatemsedem flanders, it is defined in the pywatemsedem postprocess.py core function, as the postprocess.py script contains many functionalities only coupled to flanders.

Example

An example of how the filesystem file can be used in the pywatemsedem code is given below. Assume that you have a pywatemsedem process and model run in molenbeek/scenario_1. For example, if you wish to assign the filename of the buffers raster file in the modeloutput subfolder of scenario_1 to a variable in pywatemsedem, you can use it as (using pathlib.Path module):

dict_filenames = {}
dict_filename[f"{prefix}_{tag_variable}"] = Path("molenbeek") / scenario_1 /
f"{folder}" / (filename%argument + "." + extension)

This way, automated filename reconstruction can be guided by the use of this table.

pywatemsedem.postprocess.reformat_routing_grass(df_routing_grass)[source]

Reformat the routing_gras DataFrame

Reformat the routing_gras dataframe so targets 1 and 2 are reported in the same column target.

Parameters:

df_routing_grass (pandas.DataFrame) – See pywatemsedem.process_output.open_txt_routing_file()

Returns:

df_routing_grass_T – See pywatemsedem.process_output.open_txt_routing_file()

  • gras_id_target (float): id of the routing target

  • sediout (float): sediment output pixel

Return type:

pandas.DataFrame

pywatemsedem.postprocess.select_and_rename_cols_grass_routing(df_routing_grass, target_id)[source]

Select and rename columns of grass strip routing geodataframe.

Parameters:
  • df_routing_grass (pandas.DataFrame) – See pywatemsedem.process_output.open_txt_routing_file()

  • target_id (int) – The number of the targets, can only be 1 or 2

Returns:

df_routing_grass – See pywatemsedem.process_output.open_txt_routing_file(), selected and renamed after target1 or target2

Return type:

pandas.DataFrame

pywatemsedem.postprocess.select_routing_out_of_parcel(gdf_routing)[source]

Select routing vectors defined over borders parcel

Only select the routing vector which cross the parcel border.

Parameters:

gdf_routing (geopandas.GeoDataFrame) – Loaded routing vector file (with or without sediout coupled to it). See pywatemsedem.io.modeloutput.make_routing_vct()

Returns:

gdf_routing – Selected routing vector file (with or without sediout coupled to it). See pywatemsedem.io.modeloutput.make_routing_vct()

Return type:

geopandas.GeoDataFrame

pywatemsedem.postprocess.split_endpoints_in_raster(rst_endpoints_id, rst_endpoints_in, rst_id1, rst_id2, ton=False)[source]

Split the endpoints raster (sewer_in WaTEM/SEDEM definition) file for each endpoints id present in the endpoints_id raster.

The endpoints are split according to 1: the sewers and 2: the ditches.

Parameters:
  • rst_endpoints_id (str or pathlib.Path) – File path of sewer_id raster. This raster holds the values 1 and 2

  • rst_endpoints_in (str or pathlib.Path) – File path of sewer_in raster. This raster holds the sediment transport values for every pixel defined with a 1 or 2.

  • rst_id1 (str of pathlib.Path) – File path of output raster with id equal to one.

  • rst_id2 (str of pathlib.Path) – File path of output raster with id equal to two.

  • ton (bool, default False) – Convert to ton (True)

Returns:

  • sum_id1 (float) – Total sediment load in id1

  • sum_id2 (float) – Total sediment load in id2

Note

Note that sewers in WaTEM/SEDEM are endpoints in pywatemsedem, such to make a distinction between sewers and ditches in pywatemsedem.

pywatemsedem.postprocess.transform_dict_netto_erosion_to_df(dict_netto_ero)[source]

Transform dictionary of netto erosion to a pandas dataframe format

Parameters:

dict_netto_ero (dict) –

{key:value} = {parcel_id:lst_statistics}

  • parcel id: int

  • lst_statistics: list containing of the following elements:

    • total_netto_erosion (float): total netto erosion ( ton/pixel/year)

    • mean_netto_erosion (float): mean netto erosion (ton/ha/year)

    • std_dev_netto_erosion (float): standard deviation netto erosion (kg/pixel/year)

    • arr_parcel (float): area of parcel (ha)

Returns:

df_netto_erosion – Holding statistics for every parcel according to dict_netto_ero

Return type:

pandas.DataFrame

pywatemsedem.postprocess.valid_ditches_sewers(func)[source]

Decorator to check if DTM raster is defined.

pywatemsedem.postprocess.valid_endpoints(self)[source]

Check if endpoints are in available

pywatemsedem.postprocess.valid_erosion_deposition(func)[source]

Decorator to check if DTM raster is defined.

pywatemsedem.postprocess.valid_rivers(self)[source]

Check if rivers are available

pywatemsedem.postprocess.valid_routing_sediout_vector(self)[source]

Check if routing vector is defined

pywatemsedem.postprocess.valid_routing_vector(self)[source]

Check if routing vector is defined

pywatemsedem.postprocess.valid_sinks(self)[source]

Check if any sinks present in catchment

pywatemsedem.scenario module

exception pywatemsedem.scenario.CNWSException[source]

Bases: Exception

Exception from WaTEM/SEDEM pre- and postprocessing scripts

class pywatemsedem.scenario.Scenario(catchm, year, scenario_nr, userchoices)[source]

Bases: object

Construct a new Scenario instance

The scenario class holds all dynamic information for a scenario.

property bufferoutlet

Getter buffer outlet raster

Return type:

pywatemsedem.geo.rasters.AbstractRaster

property buffers

Getter for buffer

Return type:

pywatemsedem.geo.rasters.AbstractRaster

Notes

  1. Overlapping buffers with rivers (complete overlap) are removed.

  2. Buffer outlet vector can be used to define the buffer outlets, if not used then the pixel with the lowest DTM height value is used as outlet for a buffer.

property buffers_exid

Getter buffer extension Id raster

Return type:

pywatemsedem.geo.rasters.AbstractRaster

property cfactor

Getter cfactor 3-D raster

property cn

Getter cn 3-D raster

property cn_table

Set/getter CN-table

Returns:

with columns:

  • CNmaxID (int): unique identifier, compiled from CN type id (1-11, associated to crop), contour plowing measures (0/1/2), hydrological conditions ({0,1->3}, {unknown, poor to good}), contour_id (0/1).

  • CNmax_1 (int): CNmax for soil class 1

  • CNmax_2 (int): CNmax for soil class 2

  • CNmax_3 (int): CNmax for soil class 3

  • CNmax_4 (int): CNmax for soil class 4

Return type:

pandas.DataFrame

property composite_landuse

Getter infrastructure polygon vector

conductive_dams()[source]

Getter conductive dams

Return type:

pywatemsedem.geo.raster.AbstractRaster

create_cfactor(use_source_oriented_measures=False)[source]

Creates the C-factor raster based on river, infrastructure and landuse.

Uses specific algorithm of Degerick (2015)

Requires landuse, infrastructure and river raster

The C-factor is set to (in order)

  • 0 if the landuse is river or infrastructure.

  • scaled according to the width of the grass strips.

  • C-factor of the crop for parcels (any model possible).

  • 0.001 if the landuse is forest

  • 0.01 if the landuse is grass land

  • 0 if the landuse is pond

  • 0.01 if the landuse is grass strip (where not grass strip vector is defined)

Left-over pixels are set to 0.37

Returns:

cfactor

Return type:

numpy.ndarray

create_composite_landuse(maximize_grass_strips=False)[source]

Create composite landuse to format of here.

Uses specific algorithm of Degerick (2015)

Requires at least a defined landuse and river raster

Parameters:

maximize_grass_strips (bool, default False) – Expand grass strips using rivers and infrastructure as boundary conditions. Requires definition of infrastructure and rivers.

Returns:

composite_landuse

Return type:

numpy.ndarray

Notes

The infrastructur value -7 does not follow the definition of here. This value is converted in subfunctionalities of this function to -2.

create_ini_file()[source]

Creates an ini-file for the scenario

create_ktc(ktc_low, ktc_high, ktc_limit, user_provided_ktc=1)[source]

Create ktc raster based on C-factor raster

The ktc raster is generated by classifying low and high erosion potential based on the C-factor and ktc_limit (i.e. C_factor < ktc_high -> ktc_low, C_factor > ktc_limit -> ktc_high).

The ktc value for landuse rivers, infrastructure and ponds is set to 9999 (all sediment is routed downwards).

Parameters:
  • ktc_low (float) – Transport coefficient for land covers with low erosion potential

  • ktc_high (float) – Transport coefficient for land covers with high erosion potential

  • ktc_limit (float) – C-factor to make distinction between ktc_low and ktc_high

  • user_provided_ktc (int, default 1) – Define KTC raster by user.

Returns:

ktc – Raster with ktc-values, returns an empty user_provided_ktc is 0.

Return type:

numpy.ndarray

Notes

  1. Requires assignment of C-factor and composite land-use raster.

2. The ktc values for grass strips are scaled according to their width (see pywatemsedem.ktc.scale_ktc_gdf_grass_strips()) if grass strips are used.

ditches()[source]

Getter ditches

Return type:

pywatemsedem.geo.raster.AbstractRaster

property endpoints

Getter endpoints efficiency raster

Returns:

Float64 raster with values in [0,1] efficiency (in decimal).

Return type:

pywatemsedem.geo.rasters.AbstractRaster

Notes

Id’s equal to one are converted to 0 when self.choices.dict_model_options[“OnlyInfraSewers”] is equal to 1.

property endpoints_id

Getter endpoints id raster

Returns:

Float64 raster with values:

  • 0: no endpoint

  • not equal to 0: id.

Return type:

pywatemsedem.geo.rasters.AbstractRaster

property force_routing

#todo

property grass_strips

Grass strips raster getter

property ktc

Getter ktc 3-D raster

property outlets

Getter outlets

Return type:

pywatemsedem.geo.raster.AbstractRaster

property parcels

Get parcels raster

Raster contains id’s (defined in “NR”, if not defined: according to id sequence in vector). The parcel raster is limited by the value of 32767 (int16). If values are higher, then these are limited to 32767.

Returns:

Int16 raster with values:

  • >0 and <=32767: parcel id

  • -9999: nodata

Return type:

pywatemsedem.geo.rasters.AbstractRaster

property parcels_ids

Getter rasterized parcels polygon vector

Raster contains id’s (defined in “NR”, if not defined: according to id sequence in vector).

Returns:

Float64 raster with values:

  • >0: parcel id

  • -9999: nodata

Return type:

pywatemsedem.geo.rasters.AbstractRaster, else None

property parcels_landuse

Getter rasterized parcels polygon vector

Raster contains landuse (defined in column “LANDUSE”)

Returns:

Float64 raster with values:

  • -4: grass land

  • -3: forest

  • -2: infrastructure (farms)

  • -9999: agricultural land

Return type:

pywatemsedem.geo.rasters.AbstractRaster, else None

Notes

If all parcels have a landuse code of -9999, then a None is returned (no addition to landuse).

prepare_input_files()[source]

Prepare all files (write to disk)

run_model(cnws_binary)[source]

Run the WaTEM/SEDEM model

Parameters:

cnws_binary (str) – Name of CN_WS pascal compiled executable.

temporal_resolution()[source]

Calculates for which years and seasons the scenario needs data.

Based on the defined choices in the CNWS.UserChoices ‘begin_jaar’, ‘begin_maand’ and, in case of CNWS, ‘Endtime model’.

property vct_bufferoutlets

Getter infrastructure polygon vector

property vct_buffers

Getter buffers polygon vector

property vct_conductive_dams

Getter conductive dams vector

property vct_ditches

Getter ditches lines vector

property vct_endpoints

Getter endpoints lines vector

property vct_grass_strips

Getter grass strips polygon vector

property vct_outlets

Getter outlets vector

Return type:

object

property vct_parcels

Getter parcels polygon vector

zip()[source]
pywatemsedem.scenario.add_tillage_technical_measures_to_parcels(gdf_parcels, gdf_tillage_technical)[source]

Add crop technical measures to parcels vector data.

An overlap between the target parcel polygons and source technical polygons is computed to determine for which parcels a tillage technical measure should be applied.

Parameters:
  • gdf_parcels (geopandas.GeoDataFrame) – Parcels polygon vector

  • gdf_tillage_technical (geopandas.GeoDataFrame) – Tillage technical polygon vector

  • overlap (int) – Minimal required overlap between polygons to select the implementation of a tillage technical measure to be applied for the parcel.

pywatemsedem.scenario.assign_buffer_id_to_df_buffer(df)[source]

Assign buffer id and extention id to buffer dataframe.

Parameters:

df (pandas.DataFrame) – Buffer dataframe with columns

Returns:

df – Updated with:

  • buf_id (int): buffer id.

  • buf_exid (int): buffer extension id.

Return type:

pandas.DataFrame

pywatemsedem.scenario.convert_grass_strips_to_agricultural_fields(parcels, vct_grass_strips)[source]

Convert known grass strips to agricultural fields in the parcels shape file.

If a parcel in vct_parcels intersects for 75% or more with a grass strip in vct_grass_strips, the attributes of the parcel are changed: “LANDUSE” is set to -9999 (agriculture), “GWSCOD_H” is set to “9999” (unknown crop) and “C-factor” is set to 0.37. This function updates the input vct_parcels.

The amount of intersection or overlap between a parcel is caluclated as area_intersect(grasstri, parcel)/area(parcel).

Parameters:
Returns:

parcels – With added column:

  • default_cfactor (bool): convert to default C-factor (and landuse).

Return type:

geopandas.GeoDataFrame

pywatemsedem.scenario.remove_known_grass_strips_from_parcels_vct_saga(parcels, vct_grass_strips)[source]

Remove parcels with overlap above 75%

Remove the parcels in vct_parcels that overlap with grass strips in vct_grass_strips if the overlap for both features is at least 75%.

The function updates the vct_parcels input layer

The amount of intersection or overlap between a parcel is caluclated as area_intersect(grass strips, parcel)/area(parcel).

Parameters:
pywatemsedem.scenario.valid_cfactor(func)[source]

Check if composite landuse is defined

pywatemsedem.scenario.valid_composite_landuse(func)[source]

Check if composite landuse is defined

pywatemsedem.scenario.valid_dtm(func)[source]

Check if you have defined a K-factor raster.

pywatemsedem.scenario.valid_infrastructure(func)[source]

Check if infrastructure is defined

pywatemsedem.scenario.valid_ini(func)[source]

Check if you have defined a valid ini-file.

pywatemsedem.scenario.valid_kfactor(func)[source]

Check if you have defined a K-factor raster.

pywatemsedem.scenario.valid_ktc(func)[source]

Check if composite landuse is defined

pywatemsedem.scenario.valid_landuse(func)[source]

Check if infrastructure is defined

pywatemsedem.scenario.valid_pfactor(func)[source]

Check if you have defined a P-factor raster.

pywatemsedem.scenario.valid_river(func)[source]

Check if river is defined

pywatemsedem.scenario.valid_vct_buffers(func)[source]

Check if buffers vector is defined

pywatemsedem.scenario.valid_vct_endpoints(func)[source]

Check if endpoints vector are defined

pywatemsedem.scenario.valid_vct_grass_strips(func)[source]

Check if grass strips vector is defined

pywatemsedem.scenario.valid_vct_outlets(func)[source]

Check if outlet vector is defined

pywatemsedem.templates module

class pywatemsedem.templates.InputFileName(format='filebased')[source]

Bases: object

Holds template inputfile names for WaTEM/SEDEM input

Parameters:

format (str | pathlib.Path) – Database format.

pywatemsedem.testing module

pywatemsedem.testing.check_equal_rst(rst_file_1, rst_file_2, rtol=1e-08, atol=1e-08)[source]

Check if content of raster files are equal.

Parameters:
pywatemsedem.testing.compute_difference_table_cnws_buffers(arr, arr_benchmark, buf_idext=16384)[source]

Compute table whcih indicates difference between two WaTEM/SEDEM buffer raster files.

Parameters:
  • arr (np.ndarray)

  • arr_benchmark (np.ndarray)

  • buf_idext (float) – Threshold value that differentiates in buffer raster which is a buffer_id and which is a buffer extension id, SEE XXX

Returns:

String format of difference dataframe table.

Return type:

str

pywatemsedem.testing.compute_difference_table_cnws_prckrt_rasters(arr, arr_benchmark, dict_translation={-6: 'grass strips', -5: 'pool', -4: 'meadow', -3: 'forest', -2: 'infrastructure', -1: 'river', 0: 'outside_domain', 1: 'agriculture'}, res=20)[source]

Compute table whcih indicates difference between two WaTEM/SEDEM perceelskaart raster files.

Parameters:
  • arr (np.ndarray)

  • arr_benchmark (np.ndarray)

Returns:

String format of difference dataframe table.

Return type:

str

pywatemsedem.testing.compute_difference_table_cnws_rasters(arr, arr_benchmark, tag)[source]

Compute table whcih indicates difference between two WaTEM/SEDEM raster files.

Parameters:
  • arr (np.ndarray)

  • arr_benchmark (np.ndarray)

Returns:

String format of difference dataframe table.

Return type:

str

pywatemsedem.testing.equal_ini(inifile_1, inifile_2, skip_lines=[1, 4, 5, 10])[source]

Check if settings.ini files are the same.

Ignore difference in filepath and date lines [1, 4, 5, 10] contain paths and dates which are not compared

Parameters:
  • inifile_1 (str or pathlib.Path) – File path of first ini-file.

  • inifile_2 (str or pathlib.Path) – File path of first ini-file.

  • skip_lines (list) – Lines to skip in ini-file

pywatemsedem.testing.equal_rst(rst_file_1, rst_file_2, rtol=1e-08, atol=1e-08)[source]

Check if content of raster files are equal.

Parameters:
pywatemsedem.testing.equal_table(txt_table_file_1, txt_table_file_2, rtol=1e-08, atol=1e-08, skiplines=0)[source]

Check if table data are the same

Parameters:
pywatemsedem.testing.equal_total_sediment(txt_total_sediment_file_1, txt_total_sediment_file_2, rtol=1e-08, atol=1e-08)[source]

Check if total sediment output data of two files are the same

Parameters:
pywatemsedem.testing.process_arr_cnwsperceelskaart(arr)[source]

Remove unique parcels id’s before comparing rasters

Parameters:

arr (np.ndarray) – WaTEM/SEDEM perceelskaart array to preprocess before moving to an assert statement.

Returns:

arr – Processed WaTEM/SEDEM perceelskaart array to preprocess before moving to an assert statement.

Return type:

np.ndarray

pywatemsedem.testing.process_arr_default(arr)[source]

Dummy function for processing arr

Parameters:

arr (np.ndarray) – Array to preprocess before moving to an assert statement.

Returns:

arr – Equal to input.

Return type:

np.ndarray

pywatemsedem.testing.serialize_process_raster(rst)[source]

Serializer function for rasters

Parameters:

rst (pathlib.path or str) – File path of to-assert raster

Returns:

Return function that processes numpy array of pywatemsedem raster.

Return type:

function

pywatemsedem.tools module

pywatemsedem.tools.check_cn_ws_binary(cn_ws_binary=None, fixed_name_cmd='cn_ws')[source]

Check if the compiled CN_WS program is known in the environment, or if the path reference exists

Parameters:
  • cn_ws_binary (str, default None) – File Path of compiled cn_ws Pascal code. If None, check environment.

  • fixed_name_cmd (str, default 'cn_ws') – Name of exe/program.

Returns:

cn_ws_exe – File path of compiled cn_ws Pascal code.

Return type:

str

pywatemsedem.tools.check_courant_criterium(velocity, time_step, resolution, factor=0.75)[source]

Check the courant criterium, see https://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition

Parameters:
  • velocity (float) – Stream velocity (m/s)

  • time_step (float) – Time step of calculations (s)

  • resolution (float) – Grid resolution (m)

  • factor (float) – Correction factor to avoid that CN-WS Pascal does crash if the distance water covers in a timestep that is equal to +-0.75 times the pixel resolution (temporary fix).

Returns:

time_step_posterior – Posterior time step of calculations (s)

Return type:

float

pywatemsedem.tools.extract_tags_from_template_file(template)[source]

Extract tags (scenario, catchment, year from the WaTEM/SEDEM perceelskaart template file.

Parameters:

template (pathlib.Path or str) – File path to CN-WS perceelskaart template file.

Returns:

  • catchment_name (str) – Catchment name

  • scenario (str) – Scenario number (in string!)

  • year (int) – Simulation year.

  • valid (bool) – Tag that indicate whether template format agrees with defined template format.

Note

The template format should be

pywatemsedem.tools.format_forced_routing(gdf, minmax, resolution, trajectory_routing=False)[source]

Format forced routing LineString geometry in a dataframe writable to the ini-file

Parameters:
  • gdf (GeoPandas.GeoDataFrame) – Should contain geometry-proprety with LineStrings

  • minmax (list) – [x_left, y_lower, x_right, y_upper]. The first entry is x_left, the second entry is y_lower, the third entry is x_right and the fourth entry is y_upper.

  • resolution (int) – In m

  • trajectory_routing (bool, default False) – Use routing via trajectory (True) or via jump (False)

Returns:

df – Each row is one routing element, with columns:

  • fromX (float): source X-coordinate

  • fromY (float): source Y-coordinate

  • toX (float): target X-coordinate

  • toY (float): target Y-coordinate

  • fromcol (int): source column

  • fromrow (int): source row

  • tocol (int): target column

  • torow (int): target row

Return type:

pandas.DataFrame

pywatemsedem.tools.get_df_area_unique_values_array(arr, resolution)[source]

Calculate the total area for every value in an array

The area for a value is calculated as the amount of cells with a certain value * cellsize * cellsize.

Parameters:
  • arr (numpy.ndarray) – Input array

  • resolution (int) – The spatial resolution of the raster

Returns:

df – With two columns:

  • values (float): all values within the raster

  • area (float): the area of every value in the raster

Return type:

pandas.DataFrame

pywatemsedem.tools.reformat_LineString_to_source_targetf(coordinates, trajectory_routing=False)[source]

Reformat single LineString-routing to source/target dataframe format

The routing can be organised via a trajectory or a jump:

  • trajectory: the routing follows the sequential coordinates of the elements in the LineString.

  • jump: the routing goes from the start to the end of the LineString.

Parameters:
  • coordinates (list) – List of tuples (x,y)

  • trajectory_routing (bool, default False) – Use routing via trajectory (True) or via jump (False)

Returns:

df – Each row is one routing element, with columns:

  • fromX (float): source X-coordinate

  • fromY (float): source Y-coordinate

  • toX (float): target X-coordinate

  • toY (float): target Y-coordinate

Return type:

pandas.DataFrame

pywatemsedem.tools.zip_folder(folder2zip, outfile=None)[source]

Zip a folder

Parameters:
  • folder2zip (str) – File path of the folder to be zipped

  • outfile (str) – File path and name of the output zip-file (optional). If not given the zip file will have the same name as the folder and it will be stored in the same place.

pywatemsedem.userchoices module

class pywatemsedem.userchoices.UserChoices[source]

Bases: object

set_LS_equation(L='Desmet1996_Vanoost2003', S='Nearing1997')[source]

Set the L and S-model for the scenario.

The chosen values will be stored in the ModelOptions.

Parameters:
  • L ('Desmet1996_Vanoost2003' or 'Desmet1996_McCool', optional, default) – ‘Desmet1996_Vanoost2003’ Name of the L model.

  • S ('Nearing1997' or 'McCool1987', optional, default 'Nearing1997') – Name of the S model.

set_ecm_options(defaultini=None)[source]

Set the erosion control options for the scenario.

The possible keys are:

  • ‘Include buffers’: use bufferbasins

  • ‘UseGras’: use grasstrips

  • ‘Include dams’: use dams

  • ‘Include ditches’: use ditches

  • ‘UseTeelttechn’: use culture specific measures (like strip till,…)

Parameters:

defaultini (str or pathlib.Path, optional) – ini-file with section ‘ECMOptions’ and one or more of the above mentioned keys as parameters

set_model_equation(type_model, model_equation, lst_possible_equations)[source]

Set the equation for a specific model according to a reference

Parameters:
  • type_model (str) – Name type of model.

  • model_equation (str) – Specific reference for model equation, e.g. L according to “Desmet1996_Vanoost2003”.

  • lst_possible_equations (list) – Possible references to equation

Note

See example use in pywatemsedem.CNWS.UserChoices.set_LS_equation().

set_model_options(defaultini=None)[source]

Set the ModelOptions for the scenario.

The possible keys are:

  • ‘Convert output’

  • ‘CreateKTIL’

  • ‘Estimate clay content’

  • ‘Manual outlet selection’

  • ‘Calibrate’

  • ‘Adjusted Slope’

  • ‘Buffer reduce Area’

  • ‘Force Routing’

  • ‘FilterDTM’

  • ‘River Routing’

When the modelversion is ‘WS’ one can also define ‘UseR’ as a key.

Parameters:

defaultini (str or pathlib.Path, optional) – ini-file with section ‘Options’ and one or more of the above mentioned keys as parameters

set_model_variables(defaultini=None)[source]

Set the ModelVariables for the scenario.

Parameters:

defaultini (str or pathlib.Path, optional) – ini-file with section ‘Variables’ and one or more of the above mentioned keys as parameters

Notes

The possible keys are: ‘Bulk density’, ‘ktc limit’, ‘Parcel connectivity cropland’, ‘Parcel connectivity forest’, ‘Parcel trapping efficiency cropland’, ‘Parcel trapping efficiency forest’, ‘Parcel trapping efficiency pasture’, ‘begin_jaar’, ‘begin_maand’, ‘Max kernel’, ‘Max kernel river’/

When the CN-module is used, additional variables are needed: ‘Alpha’, ‘Beta’, ‘Stream velocity’, ‘CNTable’.

When Rainfalldata is used (i.e. WS and UseR=0 or CNWS), additional variables are needed: ‘5-day antecedent rainfall’, ‘Desired timestep for model’, ‘Endtime model’, ‘Final timestep output’, ‘Rainfall filename’.

If no Rainfalldata is used (i.e. WS using a general R-factor) add the ‘R’ variable.

When calibrating the WS model, define ‘KTcHigh_lower’, ‘KTcHigh_upper’, ‘KTcLow_lower’, ‘KTcLow_upper’ and ‘steps’.

Without calibrating, define ‘ktc low’, ‘ktc high’.

When the ModelOption[‘CreateKTIL’] is 1, define ‘ktil default’ and ‘ktil threshold’.

When the ModelOption[‘Estimate clay content’] is 1, define ‘Clay content parent material’.

When the ModelOption[‘Manual outlet selection’] is 1, define ‘Outletshp’.

When the ModelOption[‘Force Routing’] is 1, define ‘Routingshp’.

set_model_version(version)[source]

Set the model version to be used in the scenario.

The model-version will be stored in the variables.

Parameters:

version (str) – ‘CN-WS’ or ‘WS’ or ‘Only Routing’

set_output(defaultini=None)[source]

Set the modeloutput for the scenario.

The possible keys are: ‘Write aspect’, ‘Write LS factor’, ‘Write RUSLE’, ‘Write sediment export’, ‘Write slope’, ‘WriteTotalRunof’, ‘Write upstream area’, ‘Write water erosion’

Parameters:

defaultini (str or pathlib.Path, optional) – ini-file with section ‘Output’ and one or more of the above mentioned keys as parameters

set_transport_capacity_equation(TC='VanOost2000')[source]

Set the transport capacity equation model for the scenario.

The chosen values will be stored in the ModelOptions.

Parameters:

TC ('VanOost2000' or 'Verstraeten2007', optional, default 'VanOost2000') – Name of the transport capacity equation model.

set_userchoices_curvenumber(type_cn_storage, txt_rainfall_filename, rainfall_depth_antecedent, begin_date, end_date, time_step_event, days_antecedent, resolution)[source]

Set userchoices for Curve-Number model.

Parameters:
class pywatemsedem.userchoices.UserChoicesCurveNumber(type_cn_storage, resolution)[source]

Bases: object

check(txt_rainfall_filename=None, rainfall_depth_antecedent=None, begin_date=None, end_date=None, time_step_event=None, days_antecedent=None, stream_velocity=None)[source]

Set the settings for an event based on whether a filesystem or database storage system is used. In a filebased system, a reference to a rainfall data file has to be given, with an amount of antecedent rainfall. In the other case the begin and end date have to be given, along with the days of antecedent, and the time step of an event.

Parameters:
  • txt_rainfall_filename (pathlib.Path or str, optional) – File path to rainfall input data file. This file is a headerless text file with two columns. The first column contains the time in minutes (starting from 0), the second column contains the rainfall in mm.

  • rainfall_depth_antecedent (int or float) – Cumulative amount of rainfall in days_antecedent.

  • begin_date (pandas.Timestamp, optional) – Begin rainfall timerseries, in UTC, make use of pd.Timestamp, see Note 1.

  • end_date (pandas.Timestamp, optional) – End rainfall timerseries, in UTC, make use of pd.Timestamp, see Note 1.

  • time_step_event (int) – Time step event.

  • days_antecedent (int or float, optional) – Number of days for antecedent

  • stream_velocity (float) – Stream velocity (m/s)

Return type:

See Parameters.

Note

1. Use of begin_date_event and end_date_event is for example, with UTC as timezone:

begin_date = pandas..to_datetime("2018-01-01", utc=True)
end_date = pandas.to_datetime("2018-01-15", utc=True)
check_choices_cn_databasestorage()[source]

Set the settings for an event for a database storage system is used.

check_choices_cn_filestorage()[source]

Set the settings for an event for a filesystem storage system is used.

pywatemsedem.valid module

pywatemsedem.valid.valid_req_property(self, current_property=None, req_property_name=None, mandatory=False)[source]

Check for required property

Parameters:
  • self (Class.instance)

  • current_property (string) – Name of current property

  • req_property_name (string) – Required set property, should be initialised to self

  • mandatory (bool, default False) – Indicate whether property is mandatory

Module contents